Skip to main content
Log in

Mimosine Mitigates Oxidative Stress in Selenium Deficient Seedlings of Vigna radiata-Part I: Restoration of Mitochondrial Function

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mimosine, a non-protein plant amino acid found in Mimosa pudica and certain species of Leucaena, was beneficial for the growth of seedlings of Vigna radiata germinated under selenium-deficient stressed condition (−Se stressed) despite the recognized toxicity of the allelochemical. Exposure of mimosine at 0.1 mM (Mim-0.1) promoted the growth of the seedlings and significantly enhanced mitochondrial functional efficiency. Growth-related parameters including root and shoot lengths and dry weight were increased by 44–58% in the Mim-0.1 group compared to that of the −Se-stressed group. Oxygen uptake by mitochondria of Mim-0.1 group, studied with different substrates, revealed enhanced State 3 respiratory rates with regulated State 4 rates, resulting in high respiratory control ratio (RCR) of 3.4 to 3.9 indicative of a high degree of oxidative coupling. Specific activities of mitochondrial electron transport enzymes, nicotinamide adenine dinucleotide (reduced form) (NADH)–cytochrome (cyt) c oxidoreductase, succinate dehydrogenase, and cyt c oxidase in the Mim-0.1 group were enhanced by 53% to threefold over those of the Se-stressed group. Marked decreases in the extent of mitochondrial lipid peroxidation ensued upon mimosine exposure, indicative of its antioxidant function. Mitochondrial 45Ca2+ uptake was notably augmented twofold in the Mim-0.1 group, compared to the Se-stressed group. Detailed kinetic analyses of Ca2+ uptake revealed positive cooperative interactions in both −Se-stressed group and Mim-0.1 groups with Hill coefficient (nH) values of 1.7 and 2, respectively. The present study establishes the beneficial effects of mimosine exposure at 0.1 mM on the growth and mitochondrial function of the seedlings grown under selenium-deficient stressed condition and a significant physiological role can be ascribed to mimosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York

    Google Scholar 

  2. Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  CAS  Google Scholar 

  3. Denton RM, McCormack JG (1985) Physiological role of Ca2+ transport by mitochondria. Nature 315:635–641

    Article  PubMed  CAS  Google Scholar 

  4. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102

    Article  PubMed  CAS  Google Scholar 

  5. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    Article  PubMed  CAS  Google Scholar 

  6. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    PubMed  CAS  Google Scholar 

  7. Mengel K (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  8. Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  9. Rouhier N, Jacquot JP (2005) The plant multigenic family of thiol peroxidases. Free Radic Biol Med 38:1413–1421

    Article  PubMed  CAS  Google Scholar 

  10. Rani P, Lalitha K (1996) Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency. Biol Trace Elem Res 51:225–234

    PubMed  CAS  Google Scholar 

  11. Easwari K (1995) Metabolic significance of selenium in germinating Vigna radiata and oxygen dependent cellular processes. Ph.D. Thesis, IIT Madras, India

  12. Sreekala M, Santosh TR, Lalitha K (1999) Oxidative stress during selenium deficiency in seedlings of Trigonella foenum-graecum and mitigation by mimosine. Part I. Hydroperoxide metabolism. Biol Trace Elem Res 70:193–207

    PubMed  CAS  Google Scholar 

  13. Norton BW, Lowry B, McSweeney C (1994) The nutritive value of Leucaena species. In: Shelton HM et al (eds) Leucaena—opportunities and limitations. ACIAR, Canberra pp 103–111

  14. Tiwari HP, Spenser ID (1965) Precursors of mimosine in Mimosa pudica. Can J Biochem 43:1687–1691

    Article  PubMed  CAS  Google Scholar 

  15. Hegarty MP, Lee CP, Christie GS, Court RD, Haydock KP (1979) The goitrogen 3-hydroxy-4(1H)-pyridone, a ruminal metabolite from Leucaena leucocephala: effects in mice and rats. Aust J Biol Sci 32:27–40

    PubMed  CAS  Google Scholar 

  16. Kamada Y, Oshiro N, Miyagi M, Oku H, Hongo F, Chinen I (1998) Osteopathy in broiler chicks fed toxic mimosine in Leucaena leucocephala. Biosci Biotechnol Biochem 62:34–38

    Article  PubMed  CAS  Google Scholar 

  17. Vargheese CM, Lalitha K (1993) Development of a high-protein feed for livestock by microbial degradation of thyrotoxic mimosine of Leucaena leucocephala. In: Lodha ML et al (eds) Adv Plant Biochem Biotech ISAB, India, pp 133–137

  18. Santosh TR (1999) Mimosine mediated metabolic modulations in mitigating oxidative stress. Ph.D. Thesis, IIT Madras, India

  19. Rapheal VS (2005) Oxidative stress and iron status—metabolic adaptations and amelioration by mimosine. Ph.D. Thesis, IIT Madras, India

  20. Ikuma H, Bonner WD (1967) Properties of higher plant mitochondria. I. Isolation and some characteristics of tightly coupled mitochondria from dark-grown mung bean hypocotyls. Plant Physiol 42:67–75

    PubMed  CAS  Google Scholar 

  21. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the Biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  22. Hatefi Y, Stiggall DL (1978) Preparation and properties of succinate: Ubiquinone oxidoreductase (complex II). Methods Enzymol 53:21–27

    Article  PubMed  CAS  Google Scholar 

  23. Luethy MH, Hayes MK, Elthon TE (1991) Partial purification and characterization of three NAD(P)H dehydrogenases from Beta vulgaris mitochondria. Plant Physiol 97:1317–1322

    PubMed  CAS  Google Scholar 

  24. Smith L (1955) Spectrophotometric assay of cytochrome c oxidase. Methods Biochem Anal 2:427–434

    Article  PubMed  CAS  Google Scholar 

  25. Oyama VI, Eagle H (1956) Measurement of cell growth in tissue culture with a phenol reagent (Folin-Ciocalteau). Proc Soc Exp Biol Med 91:305–307

    PubMed  CAS  Google Scholar 

  26. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  27. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    PubMed  CAS  Google Scholar 

  28. Lehninger AL, Rossi CS, Greenawalt JW (1963) Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat liver mitochondria. Biochem Biophys Res Commun 10:444–448

    Article  PubMed  CAS  Google Scholar 

  29. Rani P (1995) Relevance of selenium in mitochondrial functions, glutathione and hydroperoxide metabolism in the insect Corcyra cephalonica. Ph.D. Thesis, IIT Madras, India

  30. Neet KE (1983) Contemporary enzyme kinetics and mechanisms. Methods Enzymol 64:267–319

    Google Scholar 

  31. Lalitha K, Easwari K (1995) Kinetic analysis of 75selenium uptake by mitochondria of germinating Vigna radiata of different selenium status. Biol Trace Elem Res 48:67–89

    PubMed  CAS  Google Scholar 

  32. Sreekala M, Lalitha K (2001) Kinetic analyses of mitochondrial 75selenium uptake in Trigonella foenum-graecum seedlings exposed to selenium and mimosine. Biol Trace Elem Res 79:271–285

    Article  PubMed  CAS  Google Scholar 

  33. Yamaya T, Oaks A, Matsumoto H (1984) Stimulation of mitochondrial calcium uptake by light during growth of corn shoots. Plant Physiol 75:773–777

    Article  PubMed  CAS  Google Scholar 

  34. Chen CH, Lehninger AL (1973) Ca2+ transport activity in mitochondria from some plant tissues. Arch Biochem Biophys 157:183–196

    Article  PubMed  CAS  Google Scholar 

  35. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    PubMed  CAS  Google Scholar 

  36. Kasparinsky FO, Vinogradov AD (1996) Slow Ca2+-induced inactive/active transition of the energy-dependent Ca2+ transporting system of rat liver mitochondria: clue for Ca2+ influx cooperativity. FEBS Lett 389:293–296

    Article  PubMed  CAS  Google Scholar 

  37. Reed KC, Bygrave FL (1975) A kinetic study of mitochondrial calcium transport. Eur J Biochem 55:497–504

    Article  PubMed  CAS  Google Scholar 

  38. Bragadin M, Pozzan T, Azzone GF (1979) Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18:5972–5978

    Article  PubMed  CAS  Google Scholar 

  39. Martins IS, Carnieri EGS, Vercesi E (1986) Characteristics of Ca2+ transport by corn mitochondria. Biochim Biophys Acta 850:49–56

    Article  CAS  Google Scholar 

  40. Vinogradov A, Scarpa A (1973) The initial velocities of calcium uptake by rat liver mitochondria. J Biol Chem 248:5527–5531

    PubMed  CAS  Google Scholar 

  41. Moore AL, Akerman KEO (1984) Calcium and plant organelles. Plant Cell Environ 7:423–429

    Article  CAS  Google Scholar 

  42. Sreekala M, Lalitha K (2001) Uptake of 45Ca by mitochondria of Trigonella foenum-graecum as influenced by selenium and mimosine—detailed kinetic analyses. Biol Trace Elem Res 82:217–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lalitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalitha, K., Kulothungan, S.R. Mimosine Mitigates Oxidative Stress in Selenium Deficient Seedlings of Vigna radiata-Part I: Restoration of Mitochondrial Function. Biol Trace Elem Res 118, 84–96 (2007). https://doi.org/10.1007/s12011-007-0013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0013-0

Keywords

Navigation