Skip to main content
Log in

Effects of Nanoparticles on the Adhesion and Cell Viability on Astrocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In recent years, both pharmaceutical companies and manufacturing industries have expressed heightened interest in the potential applications of magnetic nanoparticles for therapeutic and technological purposes. Specifically, pharmaceutical companies seek to employ magnetic nanoparticles as carriers to facilitate effective drug delivery, especially in areas of the brain. Manufacturing industries desire to use these nanoparticles as ferrofluids and in magnetic resonance imaging. However, data concerning the effects of magnetic nanoparticles on the nervous system is limited. This study tested the hypotheses that nanoparticles can (1) inhibit adherence of astrocytes to culture plates and (2) cause cytotoxicity or termination of growth, both end points representing surrogate markers of neurotoxicity. Using light microscopy, changes in plating patterns were determined by visual assessment. Cell counting 4 days after plating revealed a significant decrease in the number of viable astrocytes in nanoparticle treated groups (p < 0.0001). To determine the cytotoxic effects of nanoparticles, astrocytes were allowed to adhere to culture plates and grow to maturity for 3 weeks before treatment. Membrane integrity and mitochondrial function were measured using colorimetric analysis lactate dehydrogenase (LDH) and 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTS), respectively. Treatment with nanoparticles did not significantly alter astrocytic LDH release (p > 0.05) in the control group (100% ± 1.56) vs the group receiving treatment (97.18% ± 2.03). However, a significant increase in MTS activity (p < 0.05) between the control (100% ± 3.65) and treated groups (112.8% ± 3.23) was observed, suggesting astrocytic mitochondrial uncoupling by nanoparticles. These data suggest that nanoparticles impede the attachment of astrocytes to the substratum. However, once astrocytes attach to the substratum and grow to confluence, nanoparticles may cause mitochondrial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Begley DJ (1996) The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 48:136–146

    PubMed  CAS  Google Scholar 

  2. Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119

    Article  PubMed  Google Scholar 

  3. Feng SS, Huang GF, Mu L (2000) Nanospheres of biodegradable polymers: a system for clinical administration of an anticancer drug paclitaxel (Taxol). Ann Acad Med Singap 29:633–639

    PubMed  CAS  Google Scholar 

  4. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  PubMed  CAS  Google Scholar 

  5. Muller BG, Leuenberger H, Kissel T (1996) Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm Res 13:32–37

    Article  PubMed  CAS  Google Scholar 

  6. Ramge P et al (2000) Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 12:1931–1940

    Article  PubMed  CAS  Google Scholar 

  7. Alyaudtin RN et al (2001) Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro. J Drug Target 9:209–221

    PubMed  CAS  Google Scholar 

  8. Kreuter J et al (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target 10:317–325

    Article  PubMed  CAS  Google Scholar 

  9. Calvo P et al (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18:1157–1166

    Article  PubMed  CAS  Google Scholar 

  10. Olivier JC et al (1999) Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 16:1836–1842

    Article  PubMed  CAS  Google Scholar 

  11. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1994) In vitro drug release behavior of d,l-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. J Pharm Sci 83:727–732

    Article  PubMed  CAS  Google Scholar 

  12. Chorny M, Fishbein I, Danenberg HD, Golomb G (2002) Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release 83:389–400

    Article  PubMed  CAS  Google Scholar 

  13. Polakovic M, Gorner T, Gref R, Dellacherie E (1999) Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J Control Release 60:169–177

    Article  PubMed  CAS  Google Scholar 

  14. Le Ray AM, Vert M, Gautier JC, Benoit JP (1994) End-chain radiolabeling and in vitro stability studies of radiolabeled poly(hydroxy acid) nanoparticles. J Pharm Sci 83:845–851

    Article  PubMed  Google Scholar 

  15. Li Y et al (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release 71:203–211

    Article  PubMed  CAS  Google Scholar 

  16. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    PubMed  CAS  Google Scholar 

  17. Sahli H et al (1997) Interactions of poly(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation system. Biomaterials 18:281–288

    Article  PubMed  CAS  Google Scholar 

  18. Bazile D et al (1995) Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498

    Article  PubMed  CAS  Google Scholar 

  19. Moghimi SM, Hunter AC (2001) Capture of stealth nanoparticles by the body’s defences. Crit Rev Ther Drug Carri Syst 18:527–550

    CAS  Google Scholar 

  20. Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93:14164–14169

    Article  PubMed  CAS  Google Scholar 

  21. Shi N, Boado RJ, Pardridge WM (2001) Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm Res 18:1091–1095

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Schlachetzki F, Pardridge WM (2003) Global non-viral gene transfer to the primate brain following intravenous administration. Mol Ther 7:11–18

    Article  PubMed  CAS  Google Scholar 

  23. Saiyed ZM, Telang SD, Ramchand CD (2003) Application of magnetic techniques in the field of drug discovery and biomedicine. Biomagn Res Technol 1:2

    Article  PubMed  Google Scholar 

  24. Kimelberg HK, Norenberg MD (1989) Astrocytes. Sci Am 260:66–72, 74, 76

    Article  PubMed  CAS  Google Scholar 

  25. Abbott NJ, Revest PA, Romero IA (1992) Astrocyte–endothelial interaction: physiology and pathology. Neuropathol Appl Neurobiol 18:424–433

    Article  PubMed  CAS  Google Scholar 

  26. Aschner M (1996) Astrocytes as modulators of mercury-induced neurotoxicity. Neurotoxicology 17:663–669

    PubMed  CAS  Google Scholar 

  27. Di Monte DA, Royland JE, Irwin I, Langston JW (1996) Astrocytes as the site for bioactivation of neurotoxins. Neurotoxicology 17:697–703

    PubMed  Google Scholar 

  28. Frangakis MV, Kimelberg HK (1984) Dissociation of neonatal rat brain by dispase for preparation of primary astrocyte cultures. Neurochem Res 9:1689–1698

    Article  PubMed  CAS  Google Scholar 

  29. Uyeda CT, Eng LF, Bignami A (1972) Immunological study of the glial fibrillary acidic protein. Brain Res 37:81–89

    Article  PubMed  CAS  Google Scholar 

  30. Nachlas MM, Margulies SI, Goldberg JD, Seligman AM (1960) The determination of lactic dehydrogenase with a tetrazolium salt. Anal Biochem 1:317–326

    Article  PubMed  CAS  Google Scholar 

  31. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320

    Article  PubMed  CAS  Google Scholar 

  32. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    Article  PubMed  CAS  Google Scholar 

  33. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  34. Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212

    PubMed  CAS  Google Scholar 

  35. Gumerlock MK, Belshe BD, Madsen R, Watts C (1992) Osmotic blood–brain barrier disruption and chemotherapy in the treatment of high grade malignant glioma: patient series and literature review. J Neurooncol 12:33–46

    Article  PubMed  CAS  Google Scholar 

  36. Schroeder U, Sommerfeld P, Ulrich S, Sabel BA (1998) Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci 87:1305–1307

    Article  PubMed  CAS  Google Scholar 

  37. Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ blood–brain barrier transport of nanoparticles. Pharm Res 20:1772–1778

    Article  PubMed  CAS  Google Scholar 

  38. Muller RH, Keck CM (2004) Drug delivery to the brain—realization by novel drug carriers. J Nanosci Nanotechnol 4:471–483

    Article  PubMed  Google Scholar 

  39. Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    Article  PubMed  CAS  Google Scholar 

  40. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. Freeman, New York, pp 465–484

    Google Scholar 

  41. Jezek P, Zackova M, Ruzicka M, Skobisova E, Jaburek M (2004) Mitochondrial uncoupling proteins—facts and fantasies. Physiol Res 53(Suppl 1):S199–S211

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Au, C., Mutkus, L., Dobson, A. et al. Effects of Nanoparticles on the Adhesion and Cell Viability on Astrocytes. Biol Trace Elem Res 120, 248–256 (2007). https://doi.org/10.1007/s12011-007-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0067-z

Keywords

Navigation