Skip to main content
Log in

Quercetin Administration During Chelation Therapy Protects Arsenic-Induced Oxidative Stress in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We studied the efficacy of quercetin and a thiol chelating agent, monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA) either individually or in combination against arsenic-induced oxidative stress and mobilization of metal in mouse. Animals were chronically exposed to 25 ppm arsenite as sodium arsenite in drinking water for 12 months followed by treatment with MiADMSA (0.2 mmol/kg, orally), quercetin (0.2 mmol, orally) either alone or in combination, once daily for 5 consecutive days. Arsenic exposure led to a significant depletion of blood δ-aminolevulinic acid dehydratase (ALAD) activity, glutathione, white (WBC) and red blood cell (RBC) counts, and an increase in platelet levels while significantly increasing the level of reactive oxygen species (in RBCs). Hepatic reduced catalase (CAT) and glutathione peroxidase activities showed a depletion, whereas thiobarbituric acid reactive substances (TBARS) levels increased on arsenic exposure indicating arsenite-induced oxidative stress in blood and liver. Kidney CAT activity showed a depletion, whereas TBARS levels increased on arsenic exposure. These biochemical changes were accompanied by an increase in blood, liver, and kidney arsenic concentration. Treatment with MiADMSA was effective in increasing ALAD activity, whereas quercetin was ineffective when given alone. Quercetin when co-administered with MiADMSA also provided no additional beneficial effect on blood ALAD activity but significantly brought altered platelet counts nearer to the normal value. In contrast, administration of quercetin alone provided significant beneficial effects on hepatic oxidative stress and kidney TBARS levels. Renal biochemical variables remained insensitive to arsenic and any of the treatments. Interestingly, combined administration of quercetin with MiADMSA had a remarkable effect in depleting total arsenic concentration from blood and soft tissues. These results lead us to conclude that quercetin administration during chelation treatment had some beneficial effects particularly on the protection of inhibited blood ALAD activity and depletion of arsenic level from target organs. The study supports our earlier conclusion that a co-administration of an antioxidant particularly flavonoids more beneficial than monotherapy with the chelating agents to achieve optimal effects of chelation in arsenite toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pontius FW, Brown KG, Chen CJ (1994) Health implications of arsenic in drinking water. J Am Water Works Assoc 86:52–63

    CAS  Google Scholar 

  2. Chen Y, Geen AV, Graziano JH, Pfaff A, Madajewicz M, Parvez F, Iftekhar Hussain AZM, Slavkovich V, Islam T, Ahs H (2007) Reduction in urinary arsenic levels in response to arsenic mitigation efforts in Araihazar, Bangladesh. Environ Health Perspect 115:917–923

    Article  PubMed  CAS  Google Scholar 

  3. Chen CJ, Yu MW, Liaw YF (1997) Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroentrol Hepatolo 12:S294–S308

    Article  CAS  Google Scholar 

  4. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Bürkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799

    Article  PubMed  CAS  Google Scholar 

  5. Andrew AS, Burgess JL, Meza MM, Demidenko E, Waugh MG, Hamilton JW, Karagas MR (2006) Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect 114:1193–1198

    Article  PubMed  CAS  Google Scholar 

  6. National Research Council (NRC) (2001) Arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  7. Nandi D, Patra RC, Swarup D (2006) Oxidative stress indices and plasma biochemical parameters during oral exposure to arsenic in rats. Food Chem Toxicol 44:1579–1584

    Article  PubMed  CAS  Google Scholar 

  8. Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite- induced apoptosis. J Cell Physiol 177:324–333

    Article  PubMed  CAS  Google Scholar 

  9. Wang TS, Kuo CF, Jan KY, Huang H (1996) Arsenite induces apoptosis in Chinese Hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169:256–268

    Article  PubMed  CAS  Google Scholar 

  10. Flora SJS, Saxena G, Mehta A (2007) Reversal of lead-induced neuronal apoptosis by chelation treatment in rats: role of ROS and intracellular Ca2+. J Pharmacol Exp Ther 322:108–116

    Article  PubMed  CAS  Google Scholar 

  11. Lynn S, Gurr JR, Lai HT, Jan KY (2000) NADH oxidase activation is involved in arsenite induced oxidative DNA damage in human vascular smooth muscle cells. Cir Res 86:514–519

    CAS  Google Scholar 

  12. Yamanaka K, Mizol M, Kato K, Hasegawa A, Nakano M, Okada S (2001) Oral administration of dimethylarsinic acid, a main metabolite of inorganic arsenic, in mice promotes skin tumorigenesis initiated by dimethylbenz (a) anthracene with or without ultraviolet B as a promoter. Biol Pharm Bull 5:510–514

    Article  Google Scholar 

  13. Csanaky I, Gregus Z (2002) Species variation in the biliary and urinary excretion of arsenate, arsenite and their metabolites. Comp Biochem Physiol C Toxicol Appl Pharmacol 131:355–365

    Article  Google Scholar 

  14. Garcia-Shavez E, Jimenez I, Segura B, Razo LMD (2006) Lipid peroxidative damage and distribution of inorganic and its metabolite in the rat nervous system after arsenite exposure: influence of alpha tocopherol. Neurotoxicology 27:1024–1031

    Article  CAS  Google Scholar 

  15. Flora SJS (1999) Arsenic induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2, 3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol 26:865–869

    Article  PubMed  CAS  Google Scholar 

  16. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Inter 160:1–40

    Article  CAS  Google Scholar 

  17. Hansen BH, Rømma S, Garmo ØA, Olsvik PO, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physio C Toxicol Pharmacol 143:263–274

    Article  CAS  Google Scholar 

  18. Kalia K, Flora SJS (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47:1–21

    Article  PubMed  CAS  Google Scholar 

  19. Kokilavani V, Devi MA, Sivarajan K, Panneerselvam C (2005) Combined efficacies of dl-α-lipoic acid and meso 2, 3 dimercaptosuccinic acid against arsenic induced toxicity in antioxidant systems of rats. Toxicol Lett 160:1–7

    Article  PubMed  CAS  Google Scholar 

  20. Das Neves RP, Carvalho F, Carvalho M, Fernandes E, Soares E, Bastos M, Pereira M (2004) Protective activity of hesperidin and lipoic acid against sodium arsenite acute toxicity in mice. Toxicol Pathol 32:527–535

    Article  PubMed  CAS  Google Scholar 

  21. Bhadauria S, Flora SJS (2007) Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats. Cell Biol Toxicol 23:91–104

    Article  PubMed  CAS  Google Scholar 

  22. Aposhian HV, Aposhian MM (1990) Meso-2, 3-dimercapto-succinic acid: chemical, pharmacological and toxicological properties of an orally effective metal chelating agent. Ann Rev Pharmacol Toxicol 30:279–306

    Article  CAS  Google Scholar 

  23. Aposhian HV, Carter DE, Hoover TD, Hsu CA, Maiorino RM, Stine E (1984) DMSA, DMPS, and DMPA- as arsenic antidotes. Fund Appl Toxicol 4:S58–S70

    Article  CAS  Google Scholar 

  24. Aposhian HV (1983) DMSA and DMPS- water soluble antidotes for heavy metal poisoning. Ann Rev Pharmacol Toxicol 23:193–215

    Article  CAS  Google Scholar 

  25. Flora SJS, Dube SN, Arora U, Kannan GM, Malhotra PR (1995) Therapeutic potential of meso 2, 3 dimercaptosuccinic acid or 2, 3-dimercapto propane 1- sulphonate in chronic arsenic intoxication in rats. Biometals 8:111–116

    Article  PubMed  CAS  Google Scholar 

  26. Forth W, Menschler D, Rummel W, Strak K (1992) Allgemeine and spezielle pharmakologie & toxikologie, vol 6. Wissenschaftsverlag, Mannheim, p 786

    Google Scholar 

  27. Guha Mazumder DN, Ghoshal UC, Saha J, Santra A, De BK, Chatterjee A, Dutta A, Angle CR, Centeno JA (1998) Randomized placebo-controlled trial of 2,3-dimercapto succinic acid in therapy of chronic arsenicosis due to drinking arsenic contaminated subsoil water. Clin Toxicol 36:683–690

    Article  CAS  Google Scholar 

  28. Ding GS, Liang YY (1991) Antidotal effects of dimercaptosuccinic acid. J Appl Toxicol 11:7–11

    Article  PubMed  Google Scholar 

  29. Bosque MA, Domingo JL, Corbella J, Jones MM, Singh PK (1994) Developmental toxicity evaluation of monoisoamyl meso 2,3- dimercaptosuccinate in mice. J Toxicol Environ Health 42:443–448

    Article  PubMed  CAS  Google Scholar 

  30. Planas Bohne F, Gabard B, Schaffer EH (1980) Toxicological studies on sodium 2, 3- dimercaptopropane 1-sulfonate in the rat. Arzneim Forch Drug Res 30:1291–1294

    CAS  Google Scholar 

  31. Gale GR, Smith AB, Jones MM, Singh PK (1993) Meso-2, 3-dimercaptosuccinic acid monoalkyl esters: effects on mercury levels in mice. Toxicol 81:49–56

    Article  CAS  Google Scholar 

  32. Flora SJS, Bhadauria S, Kannan GM, Singh N (2007) Arsenic induced oxidative stress and role of antioxidant supplementation during chelation: a review. J Environ Biol 28:333–347

    PubMed  CAS  Google Scholar 

  33. Flora SJS, Flora G, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead: chemistry, analytical aspects, environmental impacts and health effects. Elsevier, Netherlands, pp 158–228

    Google Scholar 

  34. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011

    Article  PubMed  CAS  Google Scholar 

  35. Nakamura Y, Tsuji S, Tonogai Y (2000) Determination of the levels of isoflavonoids in soybeans and soy-derived foods and estimation of isoflavonoids in the Japanese daily intake. J AOAC Int 83:635–639

    PubMed  CAS  Google Scholar 

  36. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

    PubMed  CAS  Google Scholar 

  37. Choi YJ, Kang JS, Park JH, Lee YJ, Choi JS, Kang YH (2003) Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J Nutr 133:985–991

    PubMed  CAS  Google Scholar 

  38. Pavanato A, Tunon MJ, Sanchez-Campos S, Marroni CA, Llesuy S, Gonzalez-Gallego J, Marroni N (2003) Effects of quercetin on liver damage in rats with carbon tetrachloride-induced cirrhosis. Dig Dis Sci 48:824–829

    Article  PubMed  CAS  Google Scholar 

  39. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383

    PubMed  CAS  Google Scholar 

  40. Afanas'ev IB, Ostrachovitch EA, Abramova NE, Korkina LG (1995) Different antioxidant activities of bioflavonoid rutin in normal and iron-overloading rats. Biochem Pharmacol 50:627–635

    Article  PubMed  Google Scholar 

  41. Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, Comporti M (1997) Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett 416:123–129

    Article  PubMed  CAS  Google Scholar 

  42. Ferrali M, Signorini C, Ciccoli L, Bambagioni S, Rossi V, Pompella A, Comporti M (2000) Protection of erythrocytes against oxidative damage and autologous immunoglobulin G (IgG) binding by iron chelator fluor-benzoil-pyridoxal hydrazone. Biochem Pharmacol 59:1365–1373

    Article  PubMed  CAS  Google Scholar 

  43. Hertog MG, Hollman PC, Katan MB, Kromhout D (1993) Intake of potentially anticarconogenic flavonoid and their determination in adults in the Netherlands. Nutr Cancer 20:21–29

    Article  PubMed  CAS  Google Scholar 

  44. Hollman PC, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  PubMed  CAS  Google Scholar 

  45. Stoclet JC, Chataigneau T, Ndiaye M, Oak MH, El Bedoui J, Chataigneau M, Schini-Kerth VB (2004) Vascular protection by dietary polyphenols. Eur J Pharmacol 500:299–313

    Article  PubMed  CAS  Google Scholar 

  46. Flora SJS, Bhadauria S, Pant SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci 77:2324–2337

    Article  PubMed  CAS  Google Scholar 

  47. Berlin A, Schaller KH (1974) European standardized method for the determination of delta aminolevulinic dehydratase in blood. Z Klin Chem Klin Biochem 12:389–390

    PubMed  CAS  Google Scholar 

  48. Ellman, GL (1959) Tissue sulfhydryl groups. Arch Biochem 82:70–77

    Article  PubMed  CAS  Google Scholar 

  49. Jollow DJ, Mitchell JR, Zamppaglione Z, Gillette JR (1954) Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolites. Pharmacology 11:151

    Google Scholar 

  50. Hissin PJ, Hilf R (1973) A fluorometric method for the determination of oxidized and reduced glutathione in tissue. Anal Biochem 74:214

    Article  Google Scholar 

  51. Sinha AK (1972) Colorimetric assay of Catalase. Anal Biochem 47:389–394

    Article  PubMed  CAS  Google Scholar 

  52. Ohkawa H, Onishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  53. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  54. Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–118

    Article  PubMed  CAS  Google Scholar 

  55. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophy 21:130–132

    CAS  Google Scholar 

  56. Kalia K, Narula GD, Kannan GM, Flora SJS (2007) Effects of combined administration of captopril and DMSA on arsenite induced oxidative stress and blood and tissue arsenic concentration in rats. Comp Biochem Physiol Pharmacol Toxicol 144:372–379

    Article  CAS  Google Scholar 

  57. Kannan GM, Flora SJS (2004) Chronic arsenic poisoning in the rats: treatment with combined administration of succimers and an antioxidants. Ecotoxicol Environ Safety 58:37–43

    Article  PubMed  CAS  Google Scholar 

  58. Gupta R, Dubey DK, Kannan GM, Flora SJS (2007) Concomitant administration of Moringa oleifera seed powder in the remediation of arsenic induced oxidative stress in mouse. Cell Biol Int 31:44–56

    Article  PubMed  CAS  Google Scholar 

  59. Ito H, Okamoto K, Kato K (1998) Enhancement of expression of stress proteins by agents that lower the levels of glutathione in cells. Biochem Biophys Acta 1397:223–230

    PubMed  CAS  Google Scholar 

  60. Gurr JR, Liu F, Lynn S, Jan KY (1998) Calcium-dependent nitric oxide production is involved in arsenite-induced micronuclei. Mutat Res 416:137–148

    PubMed  CAS  Google Scholar 

  61. Ramos O, Carrizales L, Yanez L (1995) Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ Health Perspect 103:85–88

    Article  PubMed  CAS  Google Scholar 

  62. Park YH, Chiou GC (2004) Structure-activity relationship (SAR) between some natural flavonoids and ocular blood flow in the rabbit. J Ocul Pharmacol Ther 20:35–42

    PubMed  CAS  Google Scholar 

  63. Chow JM, Shen SC, Huan SK, Lin HY, Chen YC (2005) Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol 69:1839–1851

    Article  PubMed  CAS  Google Scholar 

  64. Yoshizumi M, Tsuchiya K, Kirima K, Kyaw M, Suzaki Y, Tamaki T (2001) Quercetin inhibits Shc- and phosphatidylinositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin II in cultured rat aortic smooth muscle cells. Mol Pharmacol 60:656–665

    PubMed  CAS  Google Scholar 

  65. Morales AI, Vincente-Sanchez C, Jerkic M, Santiago JM, Sanchez-Gonzales PD, Perez-Barriocanal F, Lopez-Novoa JM (2006) Effect of quercetin on metallothionein, nitric oxide synthase and cyclooxygenase-2-expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol 210:128–135

    Article  PubMed  CAS  Google Scholar 

  66. Choi EJ, Lee BH, Lee K, Chee KM (2005) Long term combined administration of quercetin and daidzein inhibit quercetin-induced suppression of glutathione antioxidant defenses. Food Chem Toxicol 42:793–798

    Google Scholar 

  67. Mishra D, Mehta A, Flora SJS (2008) Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes. Chem Res Toxicol (in press)

Download references

Acknowledgment

Authors thank to Dr. R. Vijayaraghavan, Director of the establishment, for his support and encouragement. One of the authors, Deepshikha Mishra thanks Indian Council of Medical Research (ICMR), New Delhi for a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. S. Flora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, D., Flora, S.J.S. Quercetin Administration During Chelation Therapy Protects Arsenic-Induced Oxidative Stress in Mice. Biol Trace Elem Res 122, 137–147 (2008). https://doi.org/10.1007/s12011-007-8064-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8064-9

Keywords

Navigation