Skip to main content
Log in

Hypoglycemic Activity of Grifola frondosa Rich in Vanadium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The hypoglycemic activity of fermented mushroom of Grifola frondosa rich in vanadium (GFRV) was studied in this paper. Alloxan- and adrenalin-induced hyperglycemic mice were used in the study. The blood glucose and the HbA1c of the mice were analyzed respectively. After the mice were administered (ig) with GFRV, the blood glucose and the HbA1c of alloxan-induced hyperglycemic mice decreased (p < 0.05, p < 0.01) and ascension of blood glucose induced by adrenalin was inhibited (p < 0.01). Also, the bodyweight of the alloxan-induced hyperglycemic mice was increased gradually. In the fermented mushroom of G. frondosa, vanadium at lower doses in combination with G. frondosa induced significant decreases of the blood glucose and HbA1c levels in hyperglycemic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Han C, Li J, Hui Q, (2008) Determination of trace elements in Jinqi, a traditional Chinese medicine. Biol Trace Elem Res. 122(2):122–126.

    Article  PubMed  CAS  Google Scholar 

  2. Shechter Y. (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes. 39: 1–5

    Article  PubMed  CAS  Google Scholar 

  3. Lu B, Ennis D, Lai R, Bogdanovic E. (2001) Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). J Biol Chem 276: 35589–98

    Article  PubMed  CAS  Google Scholar 

  4. Semiz S, Orvig C, McNeill JH. (2002) Effects of diabetes, vanadium, and insulin on glycogen synthase activation in Wistar rats. Mol Cell Biochem. 231:23–35.

    Article  PubMed  CAS  Google Scholar 

  5. Goldfine AB, Simonson DC, Folli F. (1995) In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem. 153: 217–31

    Article  PubMed  CAS  Google Scholar 

  6. Domingo J L. (2002) Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res. 88:97–112

    Article  PubMed  CAS  Google Scholar 

  7. Thomas Scior, Antonio Guevara-García, Philippe Bernard. (2005) Are Vanadium Compounds Drugable? Structures and Effects of Antidiabetic Vanadium Compounds: A Critical Review. Mini-Rev Med Chem. 5: 995–1008

    Article  PubMed  CAS  Google Scholar 

  8. Han C, Yuan J, wang Y. (2006) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol. 20(3):191–196.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou G, Han C,(2008). The co-effect of vanadium and fermented mushroom of Coprinus comatus on glycaemic metabolism. Biol Trace Elem Res. 124(1):20–27.

    Article  PubMed  CAS  Google Scholar 

  10. Kim,D.H.,Yang,B.K.,Jeong,S.C. , (2001). Production of a hypoglycemic,extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol. Lett. 23,513–517.

    Article  CAS  Google Scholar 

  11. Keiko,K.,Hisao,A.,Hiroaki, N.(1994). Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). Biol. Pharm. Bull. 17,1106–1110.

    Google Scholar 

  12. Kalac P, Niznamska M, Bevilaqua D, (1996) Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Sci Total Enxiron. 177: 251–258.

    Article  CAS  Google Scholar 

  13. Han C, Cui B, Wang Y, (2008) Vanadium uptake by biomass of Coprinus comatus and their effect on hyperglycemic mice. Biol Trace Elem Res. 124(1):35–9.

    Article  PubMed  CAS  Google Scholar 

  14. Malinowska E, Szefer P, Falandaysz J. (2004) Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem. 84: 405–16.

    Article  CAS  Google Scholar 

  15. You Y, Lin Z. (2003) Antioxidant effect of Ganoderma polysaccharide peptide. Acta Pharm Sinica 38: 85–8.

    CAS  Google Scholar 

  16. Duncan D B. (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13: 164–76.

    Article  Google Scholar 

  17. Meeks M.J, Landolt R.R, Kessler W.V, (1971) Effect of vanadium on metabolism of glucose in the rat. J Pharm Sci. 60: 482–83.

    Article  PubMed  CAS  Google Scholar 

  18. Nomura Y, Okamoto S, Sakamoto M, (2005) Effect of cobalt on the liver glycogen content in the streptozotocin-induced diabetic rats. Mol Cell Biochem.277:127–30.

    Article  PubMed  CAS  Google Scholar 

  19. Cherrington AD, Fuchs H, Stevenson RW, (1984) Effect of epinephrine on glycogenolysis and gluconeogenesis in conscious overnight-fasted dogs.Am J Physiol 247(2 Pt 1):E137–44.

    PubMed  CAS  Google Scholar 

  20. Issekutz B Jr, Allen M. (1972) Effect of catecholamines and methylprednisolone on carbohydrate metabolism of dogs. Metabolism. 21(1): 48–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This project is supported by Science and Technology Program of Shandong Education Department of China (J08LH62).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingtao Lv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, B., Han, L., Qu, J. et al. Hypoglycemic Activity of Grifola frondosa Rich in Vanadium. Biol Trace Elem Res 131, 186–191 (2009). https://doi.org/10.1007/s12011-009-8355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8355-4

Keywords

Navigation