Skip to main content
Log in

The Redox Status in Rats Treated with Flaxseed Oil and Lead-Induced Hepatotoxicity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead is a persistent environmental pollutant, and its toxicity continues to be a major health problem due to its interference with natural environment. In the present study, we have evaluated the effect of flaxseed oil on lead acetate-mediated hepatic oxidative stress and toxicity in rats. Lead acetate enhanced lipid peroxidation and nitric oxide production in both serum and liver with concomitant reduction in glutathione, catalase, superoxide dismutase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase activities, these findings were associated with DNA fragmentation. In addition, lead acetate caused liver injury as indicated by histopathological changed of the liver with an elevation in total bilirubin, serum alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, and alkaline phosphatase. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. On the basis of the above results it can hypothesized that flaxseed oil is a natural product can be protect against lead acetate-mediated hepatic cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Skerfving S, Hogstedt C, Welinder H (2007) Broad overview of the history of Swedish occupational health research. Scand J Work Environ Health 33(Suppl 1):6–19

    PubMed  Google Scholar 

  2. Barbosa F Jr, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113(12):1669–1674

    Article  PubMed  CAS  Google Scholar 

  3. Yu J, Fujishiro H, Miyataka H, Oyama TM, Hasegawa T, Seko Y et al (2009) Dichotomous effects of lead acetate on the expression of metallothionein in the liver and kidney of mice. Biol Pharm Bull 32(6):1037–1042

    Article  PubMed  CAS  Google Scholar 

  4. Bratton GR, Zmudzki J, Bell MC, Warnock LG (1981) Thiamin (vitamin b1) effects on lead intoxication and deposition of lead in tissues: therapeutic potential. Toxicol Appl Pharmacol 59(1):164–172

    Article  PubMed  CAS  Google Scholar 

  5. Flora SJ, Singh S, Tandon SK (1984) Prevention of lead intoxication by vitamin-B complex. Z Gesamte Hyg 30(7):409–411

    PubMed  CAS  Google Scholar 

  6. Traber MG, Packer L (1995) Vitamin E: beyond antioxidant function. Am J Clin Nutr 62(6 Suppl):1501S–1509S

    PubMed  CAS  Google Scholar 

  7. Korsrud GO, Meldrum JB (1988) Effect of diet on the response in rats to lead acetate given orally or in the drinking water. Biol Trace Elem Res 17:167–173

    Article  PubMed  CAS  Google Scholar 

  8. Korsrud GO, Meldrum JB (1988) Effect on blood, liver, and kidney variables of age and of dosing rats with lead acetate orally or via the drinking water. Biol Trace Elem Res 17:151–166

    Article  PubMed  CAS  Google Scholar 

  9. Cohen SL, Moore AM, Ward WE (2005) Flaxseed oil and inflammation-associated bone abnormalities in interleukin-10 knockout mice. J Nutr Biochem 16(6):368–374

    Article  PubMed  CAS  Google Scholar 

  10. Vijaimohan K, Jainu M, Sabitha KE, Subramaniyam S, Anandhan C, Shyamala Devi CS (2006) Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats. Life Sci 79(5):448–454

    Article  PubMed  CAS  Google Scholar 

  11. Kurzer MS, Xu X (1997) Dietary phytoestrogens. Annu Rev Nutr 17:353–381

    Article  PubMed  CAS  Google Scholar 

  12. Jones MM, Cherian MG (1990) The search for chelate antagonists for chronic cadmium intoxication. Toxicology 62(1):1–25

    Article  PubMed  CAS  Google Scholar 

  13. Patrick L (2002) Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern Med Rev 7(6):456–471

    PubMed  Google Scholar 

  14. Ito Y, Niiya Y, Kurita H, Shima S, Sarai S (1985) Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead. Int Arch Occup Environ Health 56(2):119–127

    Article  PubMed  CAS  Google Scholar 

  15. Bhatia AL, Sharma A, Patni S, Sharma AL (2007) Prophylactic effect of flaxseed oil against radiation-induced hepatotoxicity in mice. Phytother Res 21(9):852–859

    Article  PubMed  CAS  Google Scholar 

  16. Tsakiris S, Schulpis KH, Marinou K, Behrakis P (2004) Protective effect of l-cysteine and glutathione on the modulated suckling rat brain Na+, K+, -ATPase and Mg2+-ATPase activities induced by the in vitro galactosaemia. Pharmacol Res 49(5):475–479

    Article  PubMed  CAS  Google Scholar 

  17. Watabe M, Masuda Y, Nakajo S, Yoshida T, Kuroiwa Y, Nakaya K (1996) The cooperative interaction of two different signaling pathways in response to bufalin induces apoptosis in human leukemia U937 cells. J Biol Chem 271(24):14067–14072

    Article  PubMed  CAS  Google Scholar 

  18. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    PubMed  CAS  Google Scholar 

  19. Schmidt M, Eisenburg J (1975) Serum bilirubin determination in newborn infants. A new micromethod for the determination of serum of plasma bilirubin in newborn infants. Fortschr Med 93(30):1461–1466

    PubMed  CAS  Google Scholar 

  20. Berkels R, Purol-Schnabel S, Roesen R (2004) Measurement of nitric oxide by reconversion of nitrate/nitrite to NO. Methods Mol Biol 279:1–8

    PubMed  CAS  Google Scholar 

  21. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  22. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  PubMed  CAS  Google Scholar 

  23. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  24. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    Article  PubMed  CAS  Google Scholar 

  25. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    PubMed  CAS  Google Scholar 

  26. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    PubMed  CAS  Google Scholar 

  27. Factor VM, Kiss A, Woitach JT, Wirth PJ, Thorgeirsson SS (1998) Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem 273(25):15846–15853

    Article  PubMed  CAS  Google Scholar 

  28. Ajayi GO, Adeniyi TT, Babayemi DO (2009) Hepatoprotective and some haematological effects of Allium sativum and vitamin C in lead-exposed wistar rats. Inter J Med Med Sci 1(3):4

    Google Scholar 

  29. Needleman HL (1992) Effects of low levels of lead exposure. Science 256(5055):294–295

    Article  PubMed  CAS  Google Scholar 

  30. Miller JR, Hudson-Edwards KA, Lechler PJ, Preston D, Macklin MG (2004) Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin, Bolivia. Sci Total Environ 320(2–3):189–209

    PubMed  CAS  Google Scholar 

  31. Pagliara P, Chionna A, Carla EC, Caforio S, Dini L (2003) Lead nitrate and gadolinium chloride administration modify hepatocyte cell surfaces. Cell Tissue Res 312(1):41–48

    PubMed  CAS  Google Scholar 

  32. Patra RC, Swarup D, Dwivedi SK (2001) Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162(2):81–88

    Article  PubMed  CAS  Google Scholar 

  33. El-Nekeety AA, El-Kady AA, Soliman MS, Hassan NS, Abdel-Wahhab MA (2009) Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 47(9):2209–2215

    Article  PubMed  CAS  Google Scholar 

  34. Shalan MG, Mostafa MS, Hassouna MM, El-Nabi SE, El-Refaie A (2005) Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology 206(1):1–15

    Article  PubMed  CAS  Google Scholar 

  35. Adaramoye OA, Osaimoje DO, Akinsanya AM, Nneji CM, Fafunso MA, Ademowo OG (2008) Changes in antioxidant status and biochemical indices after acute administration of artemether, artemether-lumefantrine and halofantrine in rats. Basic Clin Pharmacol Toxicol 102(4):412–418

    Article  PubMed  CAS  Google Scholar 

  36. Sharma V, Kansal L, Sharma A (2009) Prophylactic efficacy of Coriandrum sativum (Coriander) on testis of lead-exposed mice. Biol Trace Elem Res 136(3):337–354

    Article  PubMed  Google Scholar 

  37. Herman DS, Geraldine M, Venkatesh T (2009) Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure. J Hazard Mater 166(2–3):1410–1414

    Article  PubMed  Google Scholar 

  38. Rahman S, Sultana S (2006) Chemopreventive activity of glycyrrhizin on lead acetate mediated hepatic oxidative stress and its hyperproliferative activity in Wistar rats. Chem Biol Interact 160(1):61–69

    Article  PubMed  CAS  Google Scholar 

  39. Ramesh GT, Jadhav AL (2001) Levels of protein kinase C and nitric oxide synthase activity in rats exposed to sub chronic low level lead. Mol Cell Biochem 223(1–2):27–33

    Article  PubMed  CAS  Google Scholar 

  40. Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151–180

    Article  PubMed  CAS  Google Scholar 

  41. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529–539

    Article  PubMed  CAS  Google Scholar 

  42. Anane R, Creppy EE (2001) Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: prevention by superoxide dismutase + catalase and vitamins E and C. Hum Exp Toxicol 20(9):477–481

    Article  PubMed  CAS  Google Scholar 

  43. Lawton LJ, Donaldson WE (1991) Lead-induced tissue fatty acid alterations and lipid peroxidation. Biol Trace Elem Res 28(2):83–97

    Article  PubMed  CAS  Google Scholar 

  44. Sharma A, Sharma V, Kansal L (2009) Therapeutic Effects of Allium sativum on Lead-induced Biochemical changes in Soft tissues of Swiss Albino Mice. Phcog Mag 5:364–371

    Article  Google Scholar 

  45. Sharma V, Sharma A, Kansal L (2010) The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food Chem Toxicol 48(3):928–936

    Article  PubMed  CAS  Google Scholar 

  46. Sharma V, Pandey D (2010) Protective role of Tinospora cordifolia against lead-induced hepatotoxicity. Toxicol Int 17:12–17

    Article  PubMed  CAS  Google Scholar 

  47. Sharma A, Sharma V, Kansal L (2010) Amelioration of lead induced hepatotoxicity by Allium sativum extracts in Swiss albino mice. Libyan J Med 5:4621

    Article  Google Scholar 

  48. Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU (1999) Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 202(1–2):91–100

    Article  PubMed  CAS  Google Scholar 

  49. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342(8878):1007–1011

    Article  PubMed  CAS  Google Scholar 

  50. Prasad K (2005) Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis 179(2):269–275

    Article  PubMed  CAS  Google Scholar 

  51. Thompson LU, Robb P, Serraino M, Cheung F (1991) Mammalian lignan production from various foods. Nutr Cancer 16(1):43–52

    Article  PubMed  CAS  Google Scholar 

  52. Newairy AS, Abdou HM (2009) Protective role of flax lignans against lead acetate induced oxidative damage and hyperlipidemia in rats. Food Chem Toxicol 47(4):813–818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was gratefully supported by the centre of Excellence for Biodiversity Research, College of Science, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Abdel-Moneim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Moneim, A.E., Dkhil, M.A. & Al-Quraishy, S. The Redox Status in Rats Treated with Flaxseed Oil and Lead-Induced Hepatotoxicity. Biol Trace Elem Res 143, 457–467 (2011). https://doi.org/10.1007/s12011-010-8882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8882-z

Keywords

Navigation