Skip to main content
Log in

Effects of Dietary Copper on Nutrient Digestibility, Tissular Copper Deposition and Fur Quality of Growing-Furring Mink (Mustela vison)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study investigated the effects of dietary copper (Cu) on growth performance and fur quality in growing-furring minks. One hundred and five standard dark female minks were randomly assigned to seven groups with the following dietary treatments: basal diet with no supplemental Cu (control) and basal diet supplemented with either 6, 12, 24, 48, 96 or 192 mg/kg Cu from copper sulphate, respectively. Our data showed that final body weight (P = 0.033), daily gain (P = 0.029) and fat digestibility (P = 0.0006) responded to increasing levels of Cu. The activity of glutamic-oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) in serum increased (linear and quadratic, P < 0.05) as Cu increased in the diet. Increasing Cu improved total protein (TP) and albumin (ALB) (quadratic, P < 0.05). The level of ceruloplasmin (CER) responded in a linear (P < 0.0001) and quadratic (P < 0.0001) form with increasing level of Cu. Colour intensity of those minks pelted suggested that relatively high levels of supplemental Cu have a beneficial effect on intensifying hair colour of dark mink but did not affect leather thickness. Liver Cu and plasma Cu concentrations of the mink linearly (P < 0.0001) responded to increasing levels of Cu. Our results indicate that growing-furring mink can efficiently utilize added dietary fat and that Cu plays an important role in the digestion of dietary fat in growing-furring mink, and supplemental dietary Cu in growing-furring mink promotes fat digestion and improve hair colour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ME:

Metabolisable energy

BW:

Body weight

ADG:

Average daily gain

ADFI:

Average daily feed intake

F/G:

Feed/gain

DM:

Dry matter

CP:

Crude protein

EE:

Ether extract

Ca:

Calcium

P:

Phosphorus

GE:

Gross energy

N:

Nitrogen

GOT:

Glutamic-oxalacetic transaminase

GPT:

Glutamic-pyruvic transaminase

ALP:

Alkaline phosphatase

TP:

Total protein

ALB:

Albumin

CER:

Ceruloplasmin

BUN:

Urea nitrogen

Hb:

Haemoglobin

References

  1. Hart E, Steenbock H, Waddell J, Elvehjem C (1928) Iron in nutrition VII. Copper as a supplement to iron for hemoglobin building in the rat. J Biol Chem 77:797–833

    CAS  Google Scholar 

  2. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87:393–403

    Article  PubMed  CAS  Google Scholar 

  3. Prohaska J, Broderius M (2006) Plasma peptidylglycine alpha-amidating monooxygenase (PAM) and ceruloplasmin are affected by age and copper status in rats and mice. Comp Biochem Physiol B Biochem Mol Biol 143:360–366

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Lopez-Serrano D, Solano F, Sanchez-Amat A (2007) Involvement of a novel copper chaperone in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Microbiology 153:2241–2249

    Article  PubMed  CAS  Google Scholar 

  5. Aulerich RJ, Ringer RK, Bleavins MR, Napolitano A (1982) Effects of supplemental dietary copper on growth, reproductive performance and kit survival of standard dark mink and the acute toxicity of copper to mink. J Anim Sci 55:337–343

    PubMed  CAS  Google Scholar 

  6. Bush C, Restum J, Bursian S, Aulerich R (1995) Responses of growing mink to supplemental dietary copper and biotin. Scientifur 19:141–147

    Google Scholar 

  7. Bradfield R, Cordano A, Baertl J, Graham G (1980) Hair copper in copper deficiency. Lancet 2:343–344

    Article  PubMed  CAS  Google Scholar 

  8. NRC (1982) Nutrient requirements of mink and foxes, In: Nutrition, Subcommittee On Furbearer (Ed.), Natl Academy Pr.

  9. Glem-Hansen N, Joergensen G (1978) Digestibility of feedstuffs determined on mink. Scientifur 2:37–58

    Google Scholar 

  10. Cromwell G, Stahly T, Monegue H (1989) Effects of source and level of copper on performance and liver copper stores in weanling pigs. J Anim Sci 67:2996–3002

    PubMed  CAS  Google Scholar 

  11. Dove C (1995) The effect of copper level on nutrient utilization of weanling pigs. J Anim Sci 73:166–171

    PubMed  CAS  Google Scholar 

  12. Luo X, Dove C (1996) Effect of dietary copper and fat on nutrient utilization, digestive enzyme activities, and tissue mineral levels in weanling pigs. J Anim Sci 74:1888–1896

    PubMed  CAS  Google Scholar 

  13. Zhou W, Kornegay E, Van Laar H, Swinkels J, Wong E, Lindemann M (1994) The role of feed consumption and feed efficiency in copper-stimulated growth. J Anim Sci 72:2385–2394

    PubMed  CAS  Google Scholar 

  14. Aulerich R, Ringer R (1976) Feeding copper sulfate: could it have benefits in nutrition of mink. Us Fur Rancher 56:4

    Google Scholar 

  15. Mejborn H (1989) Effect of copper addition to mink feed during the growth and moulting period on growth, skin production, and copper retention. Scientifur 13:229–234

    Google Scholar 

  16. Mccarthy B, Travis H, Krook L, Warner R (1966) Pantothenic acid deficiency in the mink. J Nutr 89:392–398

    PubMed  CAS  Google Scholar 

  17. Rasmussen P, Borsting C (2000) Effects of variations in dietary protein levels on hair growth and pelt quality in mink (Mustela vison). Can J Anim Sci 80:633–642

    Article  CAS  Google Scholar 

  18. Zhang H, Jiang Q, Sun W, Xu C, Cong B, Yang F, Li G (2013) Effects of different dietary protein levels and DL-methionine supplementation on hair growth and pelt quality in mink (Neovision vision). J Anim Physiol Anim Nutr 97(6):1036–1042

    Article  CAS  Google Scholar 

  19. AOAC (1990) Official methods of analysis. Association of Official Analytical Chemists, Inc, Arlington, VA, 1298 pp

    Google Scholar 

  20. Jørgensen G, Glem-Hansen N (1973) A cage designed for metabolism- and nitrogen balance trials with mink. Acta Agric Scand A An 23:3–4

    Article  Google Scholar 

  21. Canh T, Aarnink A, Schutte J, Sutton A, Langhout D, Verstegen M (1998) Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs. Livest Prod Sci 56:181–191

    Article  Google Scholar 

  22. Mydland L, Frøyland J, Skrede A (2008) Composition of individual nucleobases in diets containing different products from bacterial biomass grown on natural gas, and digestibility in mink (Mustela vison). J Anim Physiol Anim Nutr 92:1–8

    CAS  Google Scholar 

  23. Rezaei-Zarchi S, Saboury A, Hong J, Ghourchian H, Norouzi P, Moosavi-Movahedi A, Ganjali M, Javed A (2007) A new method for the determination of haemoglobin concentration using a bromide-modified silver electrode. Biotechnol Appl Biochem 47:153–158

    Article  PubMed  CAS  Google Scholar 

  24. Thomas W, Collins T (1982) Comparison of venipuncture blood counts with microcapillary measurements in screening for anemia in one-year-old infants. J Pediatr 101:32–35

    Article  PubMed  CAS  Google Scholar 

  25. Rasmussen P, Damgaard B (1992) Studies on abnormal moulting in the farm-raised blue fox (Alopex lagopus). Zentralbl Veterinarmed A 39:502–508

    Article  PubMed  CAS  Google Scholar 

  26. Donald R, Schwehr E, Wilson H (1956) Colorimetric method for estimation of phosphorus in feeds, fodders and faeces. J Sci Food Agric 7:677–682

    Article  CAS  Google Scholar 

  27. Jariwala M, Suvarna S, Kumar G, Amin A, Udas A (2013) Study of the concentration of trace elements Fe, Zn, Cu, Se and their correlation in maternal serum, cord serum and colostrums. Indian J Clin Biochem 1–8

  28. Hansen N, Finne L, Skrede A, Tauson A (1991) Energy supply for the mink and the fox. Nordic Association Of Agricultural Scientists, NJF Report. p. 59

  29. Dallman T, Kiiskinen T, Mäkelä J, Niemelä P, Syrjälä-Qvist L, Valaja J, Jalava T (2002) Digestibility and nitrogen utilization of diets containing protein at different levels and supplemented with DL-methioninine, L-methionine and L-lysine in blue fox (Alopex lagopus). Anim Feed Sci Technol 98:219–235

    Article  Google Scholar 

  30. Ahlstrøm Ø, Tauson A, Hellwing A, Mydland L, Skrede A (2006) Growth performance, nitrogen balance and urinary purine derivatives in growing-furring mink (Mustela vison) fed bacterial protein produced from natural gas. J Anim Feed Sci 15:491–504

    Google Scholar 

  31. Gugołek A, Zabłocki W, Kowalska D, Janiszewski P, Konstantynowicz M, Strychalski J (2010) Nutrient digestibility in arctic fox (Vulpes lagopus) fed diets containing animal meals. Arq Bras Med Vet Zootec 62:948–953

    Google Scholar 

  32. Dermauw V, Yisehak K, Dierenfeld E, Du Laing G, Buyse J, Wuyts B, Janssens G (2013) Effects of trace element supplementation on apparent nutrient digestibility and utilisation in grass-fed zebu (Bos indicus) Cattle. Livest Sci 155:255–261

    Article  Google Scholar 

  33. Da Rocha J, Aires A, Nunes M, Flores E, Kozloski G, De Vargas A, Farias L, Da Silva Cecim M, Do Rego Leal M (2013) Metabolism, intake, and digestibility of lambs supplemented with organic chromium. Biol Trace Elem Res 156(1–3):130–133

    Article  PubMed  CAS  Google Scholar 

  34. SAS (2002) Statistical analysis system. SAS Institute, Cary

    Google Scholar 

  35. Hedges J, Kornegay E (1973) Interrelationship of dietary copper and iron as measured by blood parameters, tissue stores and feedlot performance of swine. J Anim Sci 37:1147–1154

    PubMed  CAS  Google Scholar 

  36. Edmonds M, Izquierdo O, Baker D (1985) Feed additive studies with newly weaned pigs: efficacy of supplemental copper, antibiotics and organic acids. J Anim Sci 60:462–469

    PubMed  CAS  Google Scholar 

  37. Burnell T, Cromwell G, Stahly T (1988) Effects of dried whey and copper sulfate on the growth responses to organic acid in diets for weanling pigs. J Anim Sci 66:1100–1108

    PubMed  CAS  Google Scholar 

  38. Kornegay E, Van Heugten P, Lindemann M, Blodgett D (1989) Effects of biotin and high copper levels on performance and immune response of weanling pigs. J Anim Sci 67:1471–1477

    PubMed  CAS  Google Scholar 

  39. Erickson J, Clegg K, Palmiter R (1996) Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381:415–421

    Article  PubMed  CAS  Google Scholar 

  40. King P, Williams G, Doods H, Widdowson P (2000) Effect of a selective neuropeptide Y Y(2) receptor antagonist, BIIE0246 on neuropeptide Y release. Eur J Pharmacol 396:R1–3

    Article  PubMed  CAS  Google Scholar 

  41. Hanson E, Dallman M (1995) Neuropeptide Y (NPY) may integrate responses of hypothalamic feeding systems and the hypothalamo-pituitary-adrenal axis. J Neuroendocrinol 7:273–279

    Article  PubMed  CAS  Google Scholar 

  42. Pau K, Khorram O, Kaynard A, Spies H (1989) Simultaneous induction of neuropeptide y and gonadotropin-releasing hormone release in the rabbit hypothalamus. Neuroendocrinology 49:197–201

    Article  PubMed  CAS  Google Scholar 

  43. Zhou W, Kornegay E, Lindemann M, Swinkels J, Welten M, Wong E (1994) Stimulation of growth by intravenous injection of copper in weanling pigs. J Anim Sci 72:2395–2403

    PubMed  CAS  Google Scholar 

  44. Li J, Yan L, Zheng X, Liu G, Zhang N, Wang Z (2008) Effect of high dietary copper on weight gain and neuropeptide Y level in the hypothalamus of pigs. J Trace Elem Med Biol 22:33–38

    Article  PubMed  CAS  Google Scholar 

  45. Zhang W, Zhang Y, Zhu X, Wang R, Jia Z (2011) Effect of different levels of copper and molybdenum supplements on performance, nutrient digestibility, and follicle characteristics in cashmere goats. Biol Trace Elem Res 143:1470–1479

    Article  PubMed  CAS  Google Scholar 

  46. Hellwing A, Tauson A-H, Ahlstrøm, Skrede A (2005) Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas. Arch Anim Nutr 59:335–352

    Article  PubMed  CAS  Google Scholar 

  47. Ahlstrom O, Skrede A (1998) Comparative nutrient digestibility in dogs, blue foxes, mink and rats. J Nutr 128:2676s–2677s

    PubMed  CAS  Google Scholar 

  48. Ahlstrom, Skrede A (1995) Comparative nutrient digestibility in blue foxes (Alopex lagopus) and mink (Mustela vison) fed diets with diverging fat:carbohydrate ratios. Acta Agric Scand A Anim 45:74–80

    Google Scholar 

  49. Mondal M, Roy B, Biswas P (2004) Effect of supplementation of copper on nutrient utilization by black Bengal kids. Indian J Anim Nutr 21:261–264

    CAS  Google Scholar 

  50. Sorenson Jr (1988) A physiological basis for pharmacological activities of copper complexes: an hypothesis, biology of copper complexes, Springer. Pp. 3-16

  51. Harada M, Sakisaka S, Yoshitake M, Shakadoh S, Gondoh K, Sata M, Tanikawa K (1993) Biliary copper excretion in acutely and chronically copper-loaded rats. Hepatology 17:111–117

    Article  PubMed  CAS  Google Scholar 

  52. Gross J Jr, Myers B, Kost L, Kuntz S, Larusso N (1989) Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload. J Clin Invest 83:30–39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Hsu A, Lin Y, Shih B, Li F (2008) Effects of dietary copper and sulfur amino acid levels on growth performance and metabolism of nitrogen and copper in weanling pigs. J Agric Assoc China 9:89–99

    CAS  Google Scholar 

  54. Papadimitriou E, Loumbourdis N (2005) Glycogen, proteins, and aminotransferase (GOT, GPT) changes in the frog Rana ridibunda exposed to high concentrations of copper. B Environ Contam Toxiocol 74:120–125

    Article  CAS  Google Scholar 

  55. Karan V, Vitorović S, Tutundžić V, Poleksić V (1998) Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicol Environ Saf 40:49–55

    Article  PubMed  CAS  Google Scholar 

  56. Papadimitriou E, Loumbourdis N (2002) Exposure of the frog Rana ridibunda to copper: impact on two biomarkers, lipid peroxidation, and glutathione. Bull Environ Contam Toxicol 69:0885–0891

    Article  CAS  Google Scholar 

  57. Sugawara N, Li D, Sugawara C, Miyake H (1995) Response of hepatic function to hepatic copper deposition in rats fed a diet containing copper. Biol Trace Elem Res 49:161–169

    Article  PubMed  CAS  Google Scholar 

  58. Hwang D, Wang L, Cheng H (1998) Effect of taurine on toxicity of copper in rats. Food Chem Toxicol 36:239–244

    Article  PubMed  CAS  Google Scholar 

  59. Vivoli G, Bergomi M, Rovesti S, Pinotti M, Caselgrandi E (1995) Zinc, copper, and zinc- or copper-dependent enzymes in human hypertension. Biol Trace Elem Res 49:97–106

    Article  PubMed  CAS  Google Scholar 

  60. Santi E, Viera I, Mombru A, Castiglioni J, Baran E, Torre M (2011) Synthesis and characterization of heteroleptic copper and zinc complexes with saccharinate and aminoacids. Evaluation of SOD-like activity of the copper complexes. Biol Trace Elem Res 143:1843–1855

    Article  PubMed  CAS  Google Scholar 

  61. Feng J, Ma W, Gu Z, Wang Y, Liu J (2007) Effects of dietary copper (II) sulfate and copper proteinate on performance and blood indexes of copper status in growing pigs. Biol Trace Elem Res 120:171–178

    Article  PubMed  CAS  Google Scholar 

  62. Kirchgessner M, Kim JJ, Grassmann E (1983) Contents of copper and iron and activities of ceruloplasmin and catalase in blood of growing rats receiving different amounts of iron and copper. Zentralbl Veterinarmed 30:15–25, 19 Ref

    Article  CAS  Google Scholar 

  63. Disilvestro RA (1990) Influence of dietary copper, copper injections and inflammation on rat serum ceruloplasmin activity levels. Nutr Res 10:355–358

    Article  CAS  Google Scholar 

  64. Ma D, Li F (2009) Effects of dietary copper levels on performance and serum indices of weanling to 2-month-old growing meat rabbits. Chin J Anim Nutr 21:493–498

    CAS  Google Scholar 

  65. Fatemi Naieni F, Ebrahimi B, Vakilian H, Shahmoradi Z (2012) Serum iron, zinc, and copper concentration in premature graying of hair. Biol Trace Elem Res 146:30–34

    Article  PubMed  CAS  Google Scholar 

  66. Guclu B, Kara K, Beyaz L, Uyanik F, Eren M, Atasever A (2008) Influence of dietary copper proteinate on performance, selected biochemical parameters, lipid peroxidation, liver, and egg copper content in laying hens. Biol Trace Elem Res 125:160–169

    Article  PubMed  CAS  Google Scholar 

  67. Prohaska J, Gybina A (2004) Intracellular copper transport in mammals. J Nutr 134:1003–1006

    PubMed  CAS  Google Scholar 

  68. Sendovski M, Kanteev M, Ben-Yosef V, Adir N, Fishman A (2011) First structures of an active bacterial tyrosinase reveal copper plasticity. J Mol Biol 405:227–237

    Article  PubMed  CAS  Google Scholar 

  69. Bleavins M, Aulerich R, Ringer R (1983) Hexachlorobenzene-induced effects on the lymphocyte blastogenic response to concanavalin A in the mink and European ferret. Environ Toxicol Chem 2:411–418

    Article  CAS  Google Scholar 

  70. Fisher G (1975) Function and homeostasis of copper and zinc in mammals. Sci Total Environ 4:373–412

    Article  PubMed  CAS  Google Scholar 

  71. Underwood Ej (1999) The mineral nutrition of livestock [Electronic Resource]. CABI

  72. Suttle N, Mills C (1966) Studies of the toxicity of copper to pigs. Br J Nutr 20:149–161

    Article  PubMed  CAS  Google Scholar 

  73. Stejskal S, Aulerich R, Slanker M, Braselton W, Lehning E, Napolitano A (1989) Element concentrations in livers and kidneys of ranch mink. J Vet Diagn Investig 1:343–348

    Article  CAS  Google Scholar 

  74. Brewer G, Dick R, Schall W, Yuzbasiyan-Gurkan V, Mullaney T, Pace C, Lindgren J, Thomas M, Padgett G (1992) Use of zinc acetate to treat copper toxicosis in dogs. J Am Vet Med Assoc 201:564–568

    PubMed  CAS  Google Scholar 

  75. Bremner I, Young B, Mills C (1976) Protective effect of zinc supplementation against copper toxicosis in sheep. Br J Nutr 36:551–561

    Article  PubMed  CAS  Google Scholar 

  76. Keen C, Reinstein N, Goudey-Lefevre J, Lefevre M, Lonnerdal B, Schneeman B, Hurley L (1985) Effect of dietary copper and zinc levels on tissue copper, zinc, and iron in male Rats. Biol Trace Elem Res 8:123–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The funding for this study was from the Special Fund for Agro-scientific Research in the Public Interest (No. 200903014). The staff of the State Key Laboratory for Molecular Biology of Special Economical Animals are gratefully acknowledged for their valuable help in carrying out these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Liu, Z., Zhang, T. et al. Effects of Dietary Copper on Nutrient Digestibility, Tissular Copper Deposition and Fur Quality of Growing-Furring Mink (Mustela vison). Biol Trace Elem Res 158, 166–175 (2014). https://doi.org/10.1007/s12011-014-9933-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9933-7

Keywords

Navigation