Skip to main content
Log in

Role of Magnesium in Oxidative Stress in Individuals with Obesity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords ‘magnesium’, ‘oxidative stress’, ‘malondialdehyde’, ‘superoxide dismutase’, ‘glutathione peroxidase’, ‘reactive oxygen species’, ‘inflammation’ and ‘obesity’. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

References

  1. García EA (2012) Obesidade, tecido adiposo e resistência à insulina. Acta Bioquím Clín Latinoam 46: 183–194.

  2. Cruz KJ, de Oliveira AR, Pinto DP, Morais JB, Lima Fda S, Colli C, Torres-Leal FL, Marreiro DN (2014) Influence of magnesium on insulin resistance in obese women. Biol Trace Elem Res 160:305–310

    Article  CAS  PubMed  Google Scholar 

  3. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L (2013) Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci 14:10497–10538

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gobato RC, Seixas Chaves DF, Chaim EA (2014) Micronutrient and physiologic parameters before and 6 months after RYGB. Surg Obes Relat Dis 10:944–951

    Article  PubMed  Google Scholar 

  5. Suliburska J, Bogdański P, Pupek-Musialik D, Krejpcio Z (2011) Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res 139:137–150

    Article  CAS  PubMed  Google Scholar 

  6. Warolin J, Coenen KR, Kantor JL, Whitaker LE, Wang L, Acra SA, Roberts LJ, Buchowski MS. (2014) The relationship of oxidative stress, adiposity and metabolic risk factors in healthy black and white American youth. Pediatr Obes 9: 43–52.

  7. Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46

    Article  PubMed  Google Scholar 

  8. Scherer T, Lindtner C, Zielinski E, O'Hare J, Filatova N, Buettner C (2012) Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis. J Biol Chem 287:33061–33069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD ( 2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A 107: 18226–18231.

  10. Molica F, Morel S, Kwak BR, Rohner-Jeanrenaud F, Steffens S (2015) Adipokines at the crossroad between obesity and cardiovascular disease. Thromb Haemost 113:553–566

    Article  PubMed  Google Scholar 

  11. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139

    Article  CAS  PubMed  Google Scholar 

  12. Gottlieb MGV, Morassutti AL, Cruz IBM (2010) Transição epidemiológica, estresse oxidativo e doenças crônicas não transmissíveis sob uma perspectiva evolutiva. Sci Med 21:69–80

    Google Scholar 

  13. Patel MDP, Kishore K, Patel DJ (2014) Evaluation of oxidative stress and serum magnesium levels in south Indian obese males. IJSR 3: 229–230.

  14. Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85:705–717

    Article  CAS  PubMed  Google Scholar 

  15. França BK, Alves MRM, Souto FMS, Tiziane L, Boaventura RF, Alves A (2013) Peroxidacão lipídica e obesidade: Métodos Para aferição do estresse oxidativo em obesos. J Port Gastrenterol 20:199–206

    Article  Google Scholar 

  16. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JÁ (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12:3117–3132

    Article  PubMed  PubMed Central  Google Scholar 

  17. Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:330–341

    Article  Google Scholar 

  18. Ferreira ALA, Correa CR, Freire CMM, Moreira PL, Berchieri-Ronchi CB, Reis RAS, et al. (2011) Síndrome metabólica: atualização de critérios diagnósticos e impacto do estresse oxidativo na patogênese. Rev Bras Clin Med 9:54–61

    Google Scholar 

  19. Bełtowski J (2012) Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol 39: 168–178.

  20. Murdolo G, Piroddi M, Luchetti F, Tortoioli C, Canonico B, Zerbinati C, et al. (2013) Oxidative stress and lipid peroxidation by-products at the crossroad between adipose organ dysregulation and obesity-linked insulin resistance. Biochimie 95:585–594

    Article  CAS  PubMed  Google Scholar 

  21. Lecube A, Baena-Fustegueras JA, Fort JM, Pelegrí D, Hernández C, Simó R (2012) Diabetes is the main factor accounting for hypomagnesemia in obese subjects. PLoS One 7:e30599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song CH, Choi WS, HJ O, Kim K (2007) Associations of serum minerals with body mass index in adult women. Eur J Clin Nutr 61:682–685

    CAS  PubMed  Google Scholar 

  23. Bertinato J, Xiao CW, Ratnayake1 WMN, Fernandez L, Lavergne C, Wood C, Swist E (2015) Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in south Asian and white Canadian women but not men. Food Nutri Res 59: 25974.

  24. Jastrzębska-Mierzyńska M, Ostrowska L, Hady HR, Dadan J (2012) Assessment of dietary habits, nutritional status and blood biochemical parameters inpatients prepared for bariatric surgery: a preliminary study. Wideochir Inne Tech Maloinwazyjne 7:156–165

    PubMed  PubMed Central  Google Scholar 

  25. Oliveira AR, Cruz KJ, Morais JB, Severo JS, Freitas TE, Veras AL, et al. (2015) Magnesium status and its relationship with C-reactive protein in obese women. Biol Trace Elem Res 168:296–302

    Article  PubMed  Google Scholar 

  26. Celik N, Andiran N, Yilmaz AE (2011) The relationship between serum magnesium levels with childhood obesity and insulin resistance: a review of the literature. J Pediatr Endocrinol Metab 24:675–678

    CAS  PubMed  Google Scholar 

  27. Codoñer-Franch P, Boix-García L, Simó-Jordá R, Del Castillo-Villaescusa C, Maset-Maldonado J, Valls-Bellés V (2010) Is obesity associated with oxidative stress in children? Int J Pediatr Obes 5: 56–63.

  28. Niranjan G, Anitha D, Srinivasan AR, Velu VK, Venkatesh C, Babu MS (2014) Association of inflammatory sialoproteins, lipid peroxides and serum magnesium levels with cardiometabolic risk factors in obese children of south Indian population. Int J Biomed Sci 10:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kolisek M, Montezano AC, Sponder G, Anagnostopoulou A, Vormann J, Touyz RM, et al. (2015) PARK7/DJ-1 dysregulation by oxidative stress leads to magnesium deficiency: implications in degenerative and chronic diseases. Clin Sci (Lond) 129:1143–1150

    Article  CAS  Google Scholar 

  30. Belin RJ, He K (2007) Magnesium physiology and pathogenic mechanisms that contribute to the development of the metabolic syndrome. Magnes Res 20:107–129

    CAS  PubMed  Google Scholar 

  31. Barbagallo M, Dominguez L (2010) Magnesium and aging. Curr Pharm Des 16:832–839

    Article  CAS  PubMed  Google Scholar 

  32. Calviello G, Ricci P, Lauro L, Palozza P, Cittadini A (1994) Mg deficiency induces mineral content changes and oxidative stress in rats. Biochem Mol Biol Int 32:903–911

    CAS  PubMed  Google Scholar 

  33. Hans CP, Chaudhary DP, Bansal DD (2003) Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats. Magnes Res 16:13–19

    CAS  PubMed  Google Scholar 

  34. Exley MA, Hand L, O'Shea D, Lynch L (2014) Interplay between the immune system and adipose tissue in obesity. J Endocrinol 223:41–48

    Article  Google Scholar 

  35. Khan M, Joseph F (2014) Adipose tissue and adipokines: the association with and application of adipokines in obesity. Scientifica (Cairo) 2014: 328592.

  36. López-Jaramillo P, Gómez-Arbeláez D, López-López J, López-López C, Martínez-Ortega J, Gómez-Rodríguez A, et al. (2014) The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig 18:37–45

    PubMed  Google Scholar 

  37. Nielsen FH (2010) Magnesium, inflammation, and obesity in chronic disease. Nutr Rev 68: 333–340.

  38. Maier JA (2012) Endothelial cells and magnesium: implications in atherosclerosis. Clin Sci 122:397–407

    Article  CAS  PubMed  Google Scholar 

  39. Mazur A, Maier JA, Rock E, Gueux E, Nowacki W, Rayssiguier Y (2007) Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys 458:48–56

    Article  CAS  PubMed  Google Scholar 

  40. Bae HC, Ryu HJ, Jeong SH, Lee EY, Park YH, Lee KG (2011) Oxidative stress and apoptosis induced by ZnO nanoparticles in HaCaT cells. Mol Cell Toxicol 7:333–337

    Article  CAS  Google Scholar 

  41. Weglicki WB (2012) Hypomagnesemia and inflammation: clinical and basic aspects. Ann R Nutr 32:55–71

    Article  CAS  Google Scholar 

  42. Rayssiguier Y, Libako P, Nowacki W, Rock E (2010) Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation. Magnes Res 23:73–80

    CAS  PubMed  Google Scholar 

  43. Weglicki WB, Chmielinska JJ, Kramer JH, Mak IT (2011) Cardiovascular and intestinal responses to oxidative and nitrosative stress during prolonged magnesium deficiency. Am J Med Sci 342:125–128

    Article  PubMed  Google Scholar 

  44. Venco P, Bonora M, Giorgi C, Papaleo E, Iuso A, Prokisch H et al (2015) Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, Cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2. Front Genet 6: 185.

  45. Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, et al. (2009) Selective T-type calcium channel blockade alleviates hyperalgesia in Ob/Ob mice. Diabetes 58:2656–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oteiza PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 9:1748–1759

    Article  Google Scholar 

  47. Chen HC, LT S, González-Pagán O, Overton JD, Runnels LW (2012) A key role for Mg(2+) in TRPM7's control of ROS levels during cell stress. Biochem J 445:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. LT S, Chen HC, González-Pagán O, Overton JD, Xie J, Yue L, Runnels LW (2010) TRPM7 activates m-calpain by stress-dependent stimulation of p38 MAPK and c-Jun N-terminal kinase. J Mol Biol 396:858–869

    Article  Google Scholar 

  49. Inoue H, Murayama T, Tashiro M, Sakurai T, Konishi M (2014) Mg(2+)- and ATP-dependent inhibition of transient receptor potential melastatin 7 by oxidative stress. Free Radic Biol Med 72:257–266

    Article  CAS  PubMed  Google Scholar 

  50. Sampaio FA, Feitosa MM, Sales CH, Costa e Silva DM, Cruz KJC, Oliveira FE (2014) Influence of magnesium on biochemical parameters of iron and oxidative stress in patients with type 2 diabetes. Nutr Hosp 30: 570–576.

  51. Kostellow AB, Morrill GA (2004) Iron-catalyzed lipid peroxidation in aortic cells in vitro: protective effect of extracellular magnesium. Atherosclerosis 175:15–22

    Article  CAS  PubMed  Google Scholar 

  52. Mooren FC, Krüger K, Völker K, Golf SW, Wadepuhl M, Kraus A (2011) Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects—a double-blind, placebo-controlled, randomized trial. Diabetes Obes Metab 13:281–284

    Article  CAS  PubMed  Google Scholar 

  53. Silva AP, Fragoso A, Silva C, Tavares N, Santos N, Martins H, et al. (2014) Magnesium and mortality in patients with diabetes and early chronic kidney disease. J Diabetes Metab 5:347

    Google Scholar 

  54. Li YH, Xu Q, Xu WH, Guo XH, Zhang S, Chen YD (2015) Mechanisms of protection against diabetes-induced impairment of endothelium-dependent vasorelaxation by Tanshinone IIA Biochim Biophys Acta 1850: 813–823.

  55. Ribeiro MC, Avila DS, Barbosa NB, Meinerz DF, Waczuk EP, Hassan W, et al. (2013) Hydrochlorothiazide and high-fat diets reduce plasma magnesium levels and increase hepatic oxidative stress in rats. Magnes Res 26:32–40

    CAS  PubMed  Google Scholar 

  56. Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, et al. (2013) Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther 140:239–257

    Article  CAS  PubMed  Google Scholar 

  57. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL (2009) Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension 54:1384–1392

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Mak IT (2014) Mg supplementation protects against ritonavir-mediated endothelial oxidative stress and hepatic eNOS downregulation. Free Radic Biol Med 69:77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cocate PG, Natali AJ, Oliveira AD, Longo GZ, Alfenas Rde C, Peluzio MC, Santos EC, Buthers JM, Oliveira LL, Hermsdorff HH (2014) Fruit and vegetable intake and related nutrients are associated with oxidative stress markers in middle-aged men. Nutrition 30:660–665

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilina do Nascimento Marreiro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, J.B.S., Severo, J.S., Santos, L.R.d. et al. Role of Magnesium in Oxidative Stress in Individuals with Obesity. Biol Trace Elem Res 176, 20–26 (2017). https://doi.org/10.1007/s12011-016-0793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0793-1

Keywords

Navigation