Skip to main content

Advertisement

Log in

Carnosine and Histidine Supplementation Blunt Lead-Induced Reproductive Toxicity through Antioxidative and Mitochondria-Dependent Mechanisms

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead (Pb)-induced reproductive toxicity is a well-characterized adverse effect associated with this heavy metal. It has been found that Pb exposure is associated with altered spermatogenesis, increased testicular degeneration, and pathological sperm alterations. On the other hand, it has been reported that Pb-induced reproductive toxicity is associated with increased reactive oxygen species (ROS) formation and diminished antioxidant capacity in the reproductive system. Hence, administration of antioxidants as protective agents might be of value against Pb-induced reproductive toxicity. This study was designed to investigate whether carnosine (CAR) and histidine (HIS) supplementation would mitigate the Pb-induced reproductive toxicity in male rats. Animals received Pb (20 mg/kg/day, oral, 14 consecutive days) alone or in combination with CAR (250 and 500 mg/kg/day, oral, 14 consecutive days) or HIS (250 and 500 mg/kg/day, oral, 14 consecutive days). Pb toxicity was evident in the reproductive system by a significant increase in tissue markers of oxidative stress along with severe histopathological changes, seminal tubule damage, tubular desquamation, low spermatogenesis index, poor sperm parameters, and impaired sperm mitochondrial function. It was found that CAR and HIS supplementation blunted the Pb-induced oxidative stress and mitochondrial dysfunction in the rat reproductive system. Thereby, antioxidative and mitochondria-protective properties serve as primary mechanisms for CAR and HIS against Pb-induced reproductive toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wirth JJ, Mijal RS (2010) Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med 56:147–167

    CAS  PubMed  Google Scholar 

  2. Yu Y, Han Y, Niu R, Wang J, Manthari RK, Ommati MM et al (2017) Ameliorative effect of VE, IGF-I, and hCG on the fluoride-induced testosterone release suppression in mice Leydig cells via the up-regulation of Star and Cyp11a expression. Biol Trace Elem Res 181:95–103

    PubMed  Google Scholar 

  3. Sun Z, Li S, Yu Y, Chen H, Ommati MM, Manthari RK et al (2017) Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch Toxicol 92:169–180

    PubMed  Google Scholar 

  4. Elgawish RAR, Abdelrazek HMA (2014) Effects of lead acetate on testicular function and caspase-3 expression with respect to the protective effect of cinnamon in albino rats. Toxicol Rep 1:795–801

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalia K, Flora SJ (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47:1–21

    CAS  PubMed  Google Scholar 

  6. Hsu PC, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44

    CAS  PubMed  Google Scholar 

  7. Bressler J, Kim KA, Chakraborti T, Goldstein G (1999) Molecular mechanisms of lead neurotoxicity. Neurochem Res 24:595–600

    CAS  PubMed  Google Scholar 

  8. Patra RC, Swarup D, Dwivedi SK (2001) Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162:81–88

    CAS  PubMed  Google Scholar 

  9. Sandhir R, Gill KD (1995) Effect of lead on lipid peroxidation in liver of rats. Biol Trace Elem Res 48:91–97

    CAS  PubMed  Google Scholar 

  10. Othman AI, El Missiry MA (1998) Role of selenium against lead toxicity in male rats. J Biochem Mol Toxicol 12:345–349

    CAS  PubMed  Google Scholar 

  11. Humphreys DJ (1991) Effects of exposure to excessive quantities of lead on animals. Br Vet J 147:18–30

    CAS  PubMed  Google Scholar 

  12. Ercal N, Neal R, Treeratphan P, Lutz PM, Hammond TC, Dennery PA et al (2000) A role for oxidative stress in suppressing serum immunoglobulin levels in lead-exposed Fisher 344 rats. Arch Environ Contam Toxicol 39:251–256

    CAS  PubMed  Google Scholar 

  13. Skoczynska A, Smolik R, Jelen M (1993) Lipid abnormalities in rats given small doses of lead. Arch Toxicol 67:200–204

    CAS  PubMed  Google Scholar 

  14. Adonaylo VN, Oteiza PI (1999) Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology 135:77–85

    CAS  PubMed  Google Scholar 

  15. Abdel-Moneim AE, Dkhil MA, Al-Quraishy S (2011) The redox status in rats treated with flaxseed oil and lead-induced hepatotoxicity. Biol Trace Elem Res 143:457–467

    CAS  PubMed  Google Scholar 

  16. Oberley TD, Friedman AL, Moser R, Siegel FL (1995) Effects of lead administration on developing rat kidney. II. Functional, morphologic, and immunohistochemical studies. Toxicol Appl Pharmacol 131:94–107

    CAS  PubMed  Google Scholar 

  17. Hsu PC, Hsu CC, Liu MY, Chen LY, Guo YL (1998) Lead-induced changes in spermatozoa function and metabolism. J Toxicol Environ Health A 55:45–64

    CAS  PubMed  Google Scholar 

  18. Shastri D, Kumar M, Kumar A (1999) Modulation of lead toxicity by Spirulina fusiformis. Phytother Res 13:258–260

    CAS  PubMed  Google Scholar 

  19. Batra N, Nehru B, Bansal MP (1998) The effect of zinc supplementation on the effects of lead on the rat testis. Reprod Toxicol 12:535–540

    CAS  PubMed  Google Scholar 

  20. Wang J, Yang Z, Zhu H, Lin L, Liu Z (2012) Lead-induced oxidative stress and protective effect of naringenin on testis tissues of rats. CNKI 19:2012–2019

    Google Scholar 

  21. Xu J, Ji LD, Xu LH (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol Lett 166:160–167

    CAS  PubMed  Google Scholar 

  22. Yin S-T, Tang M-L, Su L, Chen L, Hu P, Wang H-L et al (2008) Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology 249:45–54

    CAS  PubMed  Google Scholar 

  23. Ma L, Liu J-Y, Dong J-X, Xiao Q, Zhao J, Jiang F-L (2017) Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol Res 6:822–830

    CAS  Google Scholar 

  24. Amaral A, Lourenço B, Marques M, Ramalho-Santos J (2013) Mitochondria functionality and sperm quality. Reproduction 146:R163–RR74

    CAS  PubMed  Google Scholar 

  25. Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V (2012) The role of mitochondria in energy production for human sperm motility. Int J Androl 35:109–124

    CAS  PubMed  Google Scholar 

  26. Margolis FL, Grillo M, Hempstead J, Morgan JI (1987) Monoclonal antibodies to mammalian carnosine synthetase. J Neurochem 48:593–600

    CAS  PubMed  Google Scholar 

  27. Roberts PR, Zaloga GP (2000) Cardiovascular effects of carnosine. Biochemistry (Mosc) 65:856–861

    CAS  Google Scholar 

  28. Horinishi H, Grillo M, Margolis FL (1978) Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem 31:909–919

    CAS  PubMed  Google Scholar 

  29. Aydın AF, Küçükgergin C, Özdemirler-Erata G, Koçak-Toker N, Uysal M (2009) The effect of carnosine treatment on prooxidant–antioxidant balance in liver, heart and brain tissues of male aged rats. Biogerontology 11:103–109

    PubMed  Google Scholar 

  30. Fu H, Katsumura Y, Lin M, Muroya Y, Hata K, Fujii K et al (2009) Free radical scavenging and radioprotective effects of carnosine and anserine. Radiat Phys Chem 78:1192–1197

    CAS  Google Scholar 

  31. Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315

    CAS  PubMed  Google Scholar 

  32. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Nat Acad Sci 85:3175–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagasawa T, Yonekura T, Nishizawa N, Kitts DD (2001) In vitro and in vivo inhibition of muscle lipid and protein oxidation by carnosine. Mol Cell Biochem 225:29–34

    CAS  PubMed  Google Scholar 

  34. Aldini G, Granata P, Carini M (2002) Detoxification of cytotoxic alpha,beta-unsaturated aldehydes by carnosine: characterization of conjugated adducts by electrospray ionization tandem mass spectrometry and detection by liquid chromatography/mass spectrometry in rat skeletal muscle. J Mass Spectrom 37:1219–1228

    CAS  PubMed  Google Scholar 

  35. Abbasoğlu L, Kalaz EB, Soluk-Tekkeşin M, Olgaç V, Doğru-Abbasoğlu S, Uysal M (2012) Beneficial effects of taurine and carnosine in experimental ischemia/reperfusion injury in testis. Pediatr Surg Int 28:1125–1131

    PubMed  Google Scholar 

  36. Aydın AF, Küçükgergin C, Çoban J, Doğan-Ekici I, Doğru-Abbasoğlu S, Uysal M et al (2018) Carnosine prevents testicular oxidative stress and advanced glycation end product formation in D-galactose-induced aged rats. Andrologia 50. https://doi.org/10.1111/and.12939

  37. Trimeche A, Yvon JM, Vidament M, Palmer E, Magistrini M (1999) Effects of glutamine, proline, histidine and betaine on post-thaw motility of stallion spermatozoa. Theriogenology 52:181–191

    CAS  PubMed  Google Scholar 

  38. Akahane T, Tsuchiya T, Matsumoto JJ (1981) Freeze denaturation of carp myosin and its prevention by sodium glutamate. Cryobiology 18:426–435

    CAS  PubMed  Google Scholar 

  39. Tsuchiya T, Tsuchiya Y, Nonomura Y, Matsumoto JJ (1975) Prevention of freeze denaturation of carp actomyosin by sodium glutamate. J Biochem 77:853–862

    CAS  PubMed  Google Scholar 

  40. Heinz KA, Glofcheski DJ, Lepock JR, Kruuv J (1990) Mechanism of freeze-thaw damage to liver alcohol dehydrogenase and protection by cryoprotectants and amino acids. Cryobiology 27:521–538

    CAS  PubMed  Google Scholar 

  41. Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244–255

    CAS  PubMed  Google Scholar 

  42. Lalonde RJ, Lepock JR, Kruuv J (1991) Site of freeze-thaw damage and cryoprotection by amino acids of the calcium ATPase of sarcoplasmic reticulum. Biochim Biophys Acta 1079:128–138

    CAS  PubMed  Google Scholar 

  43. Carpenter JF, Hand SC, Crowe LM, Crowe JH (1986) Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Arch Biochem Biophys 250:505–512

    CAS  PubMed  Google Scholar 

  44. Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D (1995) Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil 103:17–26

    CAS  PubMed  Google Scholar 

  45. El-Batch M, Ibrahim W, Said S (2011) Effect of histidine on autotaxin activity in experimentally induced liver fibrosis. J Biochem Mol Toxicol 25:143–150

    CAS  PubMed  Google Scholar 

  46. Farshid AA, Tamaddonfard E, Belasius MS, Hamzeh-Gooshchi N et al (2009) Histopathological comparison of the effects of histidine and ketotifen in a rat model of colitis. Bull Vet Inst Pulawy 53:795–800

    Google Scholar 

  47. Farshid AA, Tamaddonfard E, Yahyaee F (2010) Effects of histidine and N-acetylcysteine on diclofenac-induced anti-inflammatory response in acute inflammation in rats. Indian J Exp Biol 48:1136–1142

    CAS  PubMed  Google Scholar 

  48. Ommati MM, Zamiri MJ, Akhlaghi A, Atashi H, Jafarzadeh MR, Rezvani MR et al (2013) Seminal characteristics, sperm fatty acids, and blood biochemical attributes in breeder roosters orally administered with sage (Salvia officinalis) extract. Anim Prod Sci 53:548–554

    CAS  Google Scholar 

  49. Fonseca JF, Torres CAA, Maffili VV, Borges AM, Santos ADF, Rodrigues MT et al (2005) The hypoosmotic swelling test in fresh goat spermatozoa. Anim Reprod 2:139–144

    Google Scholar 

  50. Ommati MM, Heidari R, Zamiri MJ, Shojaee S, Akhlaghi A, Sabouri S (2017) Association of open field behavior with blood and semen characteristics in roosters: as an alternative animal model. Int Androl. https://doi.org/10.1016/j.androl.2017.02.002

  51. Pursel VG, Johnson LA, Rampacek GB (1972) Acrosome morphology of boar spermatozoa incubated before cold shock. J Anim Sci 34:278–283

    CAS  PubMed  Google Scholar 

  52. Ommati MM, Heidari R, Jamshidzadeh A, Zamiri MJ, Sun Z, Sabouri S et al (2018) Dual effects of sulfasalazine on rat sperm characteristics, spermatogenesis, and steroidogenesis in two experimental models. Toxicol Lett 284:46–55

    CAS  PubMed  Google Scholar 

  53. Ommati MM, Tanideh N, Rezakhaniha B, Wang J, Sabouri S, Vahedi M et al (2018) Is immunosuppression, induced by neonatal thymectomy, compatible with poor reproductive performance in adult male rats? Andrology 6:199–213

    CAS  PubMed  Google Scholar 

  54. Niknahad H, Jamshidzadeh A, Heidari R, Abdoli N, Ommati MM, Jafari F et al (2016) The postulated hepatotoxic metabolite of methimazole causes mitochondrial dysfunction and energy metabolism disturbances in liver. Pharm Sci 22:217–226

    Google Scholar 

  55. Jamshidzadeh A, Heidari R, Abasvali M, Zarei M, Ommati MM, Abdoli N et al (2017) Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia. Biomed Pharmacother 86:514–520

    CAS  PubMed  Google Scholar 

  56. Caro AA, Adlong LW, Crocker SJ, Gardner MW, Luikart EF, Gron LU (2012) Effect of garlic-derived organosulfur compounds on mitochondrial function and integrity in isolated mouse liver mitochondria. Toxicol Lett 214:166–174

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Niknahad H, Jamshidzadeh A, Heidari R, Hosseini Z, Mobini K, Khodaei F et al (2016) Paradoxical effect of methimazole on liver mitochondria: in vitro and in vivo. Toxicol Lett 259:108–115

    CAS  PubMed  Google Scholar 

  58. Heidari R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Esfandiari A, Azarpira N et al (2018) Dithiothreitol supplementation mitigates hepatic and renal injury in bile duct ligated mice: potential application in the treatment of cholestasis-associated complications. Biomed Pharmacother 99:1022–1032

    CAS  PubMed  Google Scholar 

  59. Heidari R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Ommati MM, Abdoli N et al (2018) Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice. Biomed Pharmacother 97:1086–1095

    CAS  PubMed  Google Scholar 

  60. Jamshidzadeh A, Niknahad H, Heidari R, Zarei M, Ommati MM, Khodaei F (2017) Carnosine protects brain mitochondria under hyperammonemic conditions: relevance to hepatic encephalopathy treatment. PharmaNutrition 5:58–63

    Google Scholar 

  61. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    CAS  PubMed  Google Scholar 

  62. Niknahad H, Heidari R, Mohammadzadeh R, Ommati MM, Khodaei F, Azarpira N et al (2017) Sulfasalazine induces mitochondrial dysfunction and renal injury. Ren Fail 39:745–753

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Heidari R, Jamshidzadeh A, Niknahad H, Mardani E, Ommati MM, Azarpira N et al (2016) Effect of taurine on chronic and acute liver injury: focus on blood and brain ammonia. Toxicol Rep 3:870–879

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Katalinic V, Modun D, Music I, Boban M (2005) Gender differences in antioxidant capacity of rat tissues determined by 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. Comp Biochem Physiol 140:47–52

    CAS  Google Scholar 

  65. Heidari R, Moezi L, Asadi B, Ommati MM, Azarpira N (2017) Hepatoprotective effect of boldine in a bile duct ligated rat model of cholestasis/cirrhosis. PharmaNutrition 5:109–117

    Google Scholar 

  66. Heidari R, Jamshidzadeh A, Niknahad H, Safari F, Azizi H, Abdoli N et al (2016) The hepatoprotection provided by taurine and glycine against antineoplastic drugs induced liver injury in an ex vivo model of normothermic recirculating isolated perfused rat liver. Trends Pharmacol Sci 2:59–76

    CAS  Google Scholar 

  67. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  68. Blank ML, O'Neill PJ, Steigman CK, Cobb LM, Wilde RA, Havenstein PJ et al (1993) Reperfusion injury following testicular torsion and detorsion in prepubertal rats. Urol Res 21:389–393

    CAS  PubMed  Google Scholar 

  69. Kianifard D, Sadrkhanlou R-A, Hasanzadeh S (2011) The histological, histomorphometrical and histochemical changes of testicular tissue in the metformin treated and untreated streptozotocin-induced adult diabetic rats. Vet Res Forum 3:13–24

    Google Scholar 

  70. Dkhil MA, Moneim AEA, Al-Quraishy S (2016) Indigofera oblongifolia ameliorates lead acetate-induced testicular oxidative damage and apoptosis in a rat model. Biol Trace Elem Res 173:354–361

    CAS  PubMed  Google Scholar 

  71. Acharya UR, Acharya S, Mishra M (2003) Lead acetate induced cytotoxicity in male germinal cells of Swiss mice. Ind Health 41:291–294

    CAS  PubMed  Google Scholar 

  72. Graca A, Ramalho-Santos J, de Lourdes PM (2004) Effect of lead chloride on spermatogenesis and sperm parameters in mice. Asian J Androl 6:237–241

    CAS  PubMed  Google Scholar 

  73. Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MC (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential and membrane lipid peroxidation. J Androl 21:895–902

    CAS  PubMed  Google Scholar 

  74. Bazrgar M, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M (2015) Melatonin ameliorates oxidative damage induced by maternal lead exposure in rat pups. Physiol Behav 151:178–188

    CAS  PubMed  Google Scholar 

  75. Mate JM, Aledo JC, Perez-Gomez C, Esteban del Valle A, Segura JM (2000) Interrelationship between oxidative damage and antioxidant enzyme activities: an easy and rapid experimental approach. Biochem Educ 28:93–95

    CAS  PubMed  Google Scholar 

  76. Kasperczyk A, Kasperczyk S, Horak S, Ostałowska A, Grucka-Mamczar E, Romuk E et al (2008) Assessment of semen function and lipid peroxidation among lead exposed men. Toxicol Appl Pharmacol 228:378–384

    CAS  PubMed  Google Scholar 

  77. Chen L, Yang X, Jiao H, Zhao B (2003) Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC12 cells. Chem Res Toxicol 16:1155–1161

    CAS  PubMed  Google Scholar 

  78. Szynaka B, Andrzejewska A, Tomasiak M, Augustynowicz A (1999) Exocrine cell mitochondria of the rat pancreas after lead intoxication. Exp Toxicol Pathol 51:559–564

    CAS  PubMed  Google Scholar 

  79. Xu J, Lian L-j WC, Wang X-f, Fu W-y, Xu L-h (2008) Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol 46:1488–1494

    CAS  PubMed  Google Scholar 

  80. Hipkiss AR (2010) Aging, proteotoxicity, mitochondria, glycation, NAD+ and carnosine: possible inter-relationships and resolution of the oxygen paradox. Front Aging Neurosci 2:10

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Corona C, Frazzini V, Silvestri E, Lattanzio R, Sorda RL, Piantelli M et al (2011) Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One 6:e17971

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kang K-S, Yun J-W, Lee Y-S (2002) Protective effect of l-carnosine against 12-O-tetradecanoylphorbol-13-acetate- or hydrogen peroxide-induced apoptosis on v-myc transformed rat liver epithelial cells. Cancer Lett 178:53–62

    CAS  PubMed  Google Scholar 

  83. Kukreja RC, Loesser KE, Kearns AA, Naseem SA, Hess ML (1993) Protective effects of histidine during ischemia-reperfusion in isolated perfused rat hearts. Am J Phys 264:H1370–H1H81

    CAS  Google Scholar 

  84. Alves MG, Oliveira PJ, Carvalho RA (2009) Mitochondrial preservation in celsior versus histidine buffer solution during cardiac ischemia and reperfusion. Cardiovasc Toxicol 9:185–193

    PubMed  Google Scholar 

  85. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu S-S (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Phys 287:C817–CC33

    CAS  Google Scholar 

  86. Schaffer SW, Suleiman MS (2010) Mitochondria: the dynamic organelle. Springer Science & Business Media, New York 359 p

    Google Scholar 

  87. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    CAS  PubMed  Google Scholar 

  88. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    CAS  PubMed  Google Scholar 

  89. Canabady-Rochelle LLS, Harscoat-Schiavo C, Kessler V, Aymes A, Fournier F, Girardet J-M (2015) Determination of reducing power and metal chelating ability of antioxidant peptides: revisited methods. Food Chem 183:129–135

    CAS  PubMed  Google Scholar 

  90. Leberman R, Rabin BR (1959) Metal complexes of histidine. Trans Faraday Soc 55:1660–1670

    CAS  Google Scholar 

  91. Sundberg RJ, Martin RB (1974) Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem Rev 74:471–517

    CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the Pharmaceutical Sciences Research Center and the Vice Chancellor for Research, Shiraz University of Medical Sciences for the financial support (grant no. 95-01-36-11290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Heidari.

Ethics declarations

The rats were killed according to an animal protocol that was approved by the Institutional Animal Ethics Committee of Shiraz University of Medicine (Shiraz, Iran; no. 11290).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ommati, M.M., Jamshidzadeh, A., Heidari, R. et al. Carnosine and Histidine Supplementation Blunt Lead-Induced Reproductive Toxicity through Antioxidative and Mitochondria-Dependent Mechanisms. Biol Trace Elem Res 187, 151–162 (2019). https://doi.org/10.1007/s12011-018-1358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1358-2

Keywords

Navigation