Skip to main content
Log in

In Vivo and In Vitro Assessments of the Antibacterial Potential of Chitosan-Silver Nanocomposite Against Methicillin-Resistant Staphylococcus aureus–Induced Infection in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most threatening multidrug-resistant bacteria worldwide. Owing to their efficient antimicrobial properties, nanoparticles have been widely used as an alternative approach for combating the antibiotic-resistant bacteria. Consequently, this study was designed to compare in between the bactericidal effect of low doses (5 mg/kg bwt) of nanoparticles of chitosan (Ch-NPs), silver (Ag-NPs), and chitosan-silver nanocomposites (Ch-Ag NCs) both in vitro and in vivo against experimentally chronic infection induced by methicillin-resistant Staphylococcus aureus (MRSA). The three forms of nanoparticles were tested for their in vitro antimicrobial potential against MRSA by detection of MICs and MBCs using microdilution method. In vivo, thirty-five male albino Wistar rats were used and divided into five groups (n = 7). Group l (negative control), group 2 (MRSA infected and untreated), groups 3, 4, and 5 (MRSA infected then treated with Ch-NPs, Ag-NPs, and Ch-Ag NCs respectively for 7 days). After 6 weeks, blood samples were collected then rats were euthanized to collect different organs (liver, spleen, lungs, and kidneys). Some of them were kept in 10% formalin for histopathological investigations while others used for bacterial re-isolation. Ch-Ag NCs showed the lowest MIC and MBC among the tested nanoparticles. Moreover, the highest histopathological scoring was observed in the infected and untreated group while the lowest scoring was detected in groups treated with Ch-Ag NCs in comparison with the negative control group. The highest bacterial count was noticed in the infected and untreated group followed by those treated with Ch-NPs while the lowest count was observed in group treated with Ch-Ag NCs. Depending on these results, it can be concluded that Ch-Ag NCs have a strong bactericidal effect against MRSA and may be used as alternative option to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MRSA:

methicillin-resistant Staphylococcus aureus

Ch-NPs:

chitosan nanoparticles

Ag NPs:

silver nanoparticles

Ch-Ag NCs:

chitosan-silver nanocomposites

References

  1. Dizaj SM, LOTFIPOUR F, Barzegar-Jalali M, ZARRINTAN MH, Adibkia K. Mater Sci Eng C 2014;44(1):278

  2. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Huh AJ, Kwon YJ (2011) Nanoantibiotics; a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    CAS  PubMed  Google Scholar 

  4. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    CAS  PubMed  Google Scholar 

  5. Khalaf AA, Hassanen EI, Azouz RA, Zaki AR, Ibrahim MA, Farroh KY (2019) Ameliorative effect of zinc oxide nanoparticles against dermal toxicity induced by lead oxide in rats. Int J Nanomedicine 14:7729–7741

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century – a clinical super-challenge. N Engl J Med 360(5):439–443

    CAS  PubMed  Google Scholar 

  7. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hibbitts A, O’Leary C (2018 Feb) Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials. 11(2):321

    PubMed Central  Google Scholar 

  9. Das RS, Gangand S (2011) Nath preparation and anti-bacterial activity of silver nanoparticles. J Biomater Nanobiotechnol 2(4):472

    CAS  Google Scholar 

  10. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles 446 with HIV-1. J Nanobiotechnology 3:6

    PubMed  PubMed Central  Google Scholar 

  11. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43

    CAS  Google Scholar 

  12. Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC (2007) In-vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect 8(3):397–404

    Google Scholar 

  13. Sotiriou GA, Pratsinis SE (2011) Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng 1:3–10

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brett DW (2006) A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manage 52(1):34–41

    PubMed  Google Scholar 

  15. Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, Kleeberger SR (2017) Genetic determinants of susceptibility to silver nanoparticle–induced acute lung inflammation in mice. Fed Am Soc Exper Biolog J 31:4600–4611

    CAS  Google Scholar 

  16. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):11

    PubMed  PubMed Central  Google Scholar 

  17. Dzung NA, Khanh VT, Dzung TT (2011) Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbhydr Polym 84:751–755

    CAS  Google Scholar 

  18. Sang NV, Hiep DM, Dzung N (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2:289–294

    Google Scholar 

  19. Ngo DH, Kim SK (2014) Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 73:15–31

    CAS  PubMed  Google Scholar 

  20. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state-of-the-art review. Int J Food Microbiol 144(1):51–63

    CAS  PubMed  Google Scholar 

  21. Li H, Qin L, Wang Z, Li S (2012) Res. Synthesis and characterization of ramose tetralactosyl-lysyl-chitosan-5-fluorouracil and its in-vitro release. Chem Int 38:1421–1429

    CAS  Google Scholar 

  22. Gupta NK, Tomar P, Sharma VK (2011) Dixit, development and characterization of chitosan coated poly-(ɛ-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine. 29:9026–9037

    CAS  PubMed  Google Scholar 

  23. Gan QT, Wang C, Cochrane PM (2005) Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf B 44:65–73

    CAS  Google Scholar 

  24. Rhim JW, Hong SI, Park HM, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822

    CAS  PubMed  Google Scholar 

  25. Lara HH, Ayala-Núñez NV, Turrent LD, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621

    CAS  Google Scholar 

  26. Moghaddam AB, Nazari T, Badraghi J, Kazemzad M (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci 4:247–257

    CAS  Google Scholar 

  27. Al-Nemrawi NK, Alsharif SS, Dave RH (2018) Preparation of chitosan-TPP nanoparticles: the influence of chitosan polymeric properties and formulation variables. Int J App Pharm 10(5):60–65

    CAS  Google Scholar 

  28. Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY (2019) Toxicopathological and immunological studies on different concentrations of chitosan- coated silver nanoparticles in rats. Int J Nanomedicine 14:4723–4739

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Clinical and Laboratory Standards Institute Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement M100-S172007 Wayne, PA, USA CLSI

  30. Clinical and Laboratory Standards Institute, “Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard, 3rd ed,” CLSI Document M27-A3, CLSI, Wayne, Pa, USA, 2008

  31. Abd-Elhakeem MA, Badawy I, Hamzawy MA, Raafat A, Elsayed AM, Nadim M, Zaher A, Shahin A (2014) Antimicrobial activity and cytotoxicity of silver nanoparticles formulated cream against Staphylococcus aureus dermal infection in albino rats. JND 2(3):235–239

  32. Bancroft, John D and Gamble, Marilyn (2008) Theory and practice of histological techniques (6th ed). Churchill Livingstone, [Edinburgh]

  33. Hassanen EI, Tohamy AF, Issa MY, Ibrahim MA, Farroh KY, Hassan AM (2019) Pomegranate juice diminishes the mitochondrial-dependent cell death and NF-ĸB signaling pathway induced by copper oxide nanoparticles on the liver and kidneys of rats. Int J Nanomedicine 14:8905–8922

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nair N, Biswas R, Götz F (2014) Impact of Staphylococcus aureus on pathogenesis in polymicrobial infections. Infect Immun 82(6):2162–2169

    PubMed  PubMed Central  Google Scholar 

  35. Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH, Lessa FC, Lynfield R, Nadle J, Petit S, Ray SM, Schaffner W, Townes J, Fridkin S (2013) Emerging infections program–active bacterial core surveillance MRSA surveillance investigators national burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med 173:1970–1978

    PubMed  Google Scholar 

  36. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Google Scholar 

  37. Labreure R, Sona AJ, Turos E (2019) Anti-methicillin resistant Staphylococcus aureus (MRSA) nanoantibiotics. Front Pharmacol 10:1121

    Google Scholar 

  38. Han G, Martinez LR, Mihu MR, Friedman AJ, Friedman JM, Nosanchuk JD (2009) Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One 4(11)

  39. Krishna S, Miller LS (2012) Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol 34:261–280

    CAS  PubMed  Google Scholar 

  40. Vinay K, Abbas AK, Fauston N, Aster JC. Robbins and Cotran pathologic basis of disease. New Delhi, India 2005:628–36

  41. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    CAS  PubMed  Google Scholar 

  42. Miller LS, Cho JS (2011) Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol 11:505–518

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Olaru F, Jensen LE (2010) Staphylococcus aureus stimulates neutrophil targeting chemokine expression in keratinocytes through an autocrine IL-1alpha signaling loop. J Invest Dermatol 130:1866–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Puel A, Picard C, Lorrot M, Pons C, Chrabieh M, Lorenzo L, Mamani-Matsuda M, Jouanguy E, Gendrel D, Casanova JL (2008) Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J Immunol 180:647–654

    CAS  PubMed  Google Scholar 

  45. Prabhakara R, Foreman O, De Pascalis R, Lee GM, Plaut RD, Kim SY, Stibitz S, Elkins KL, Merkel TJ (2013) Epicutaneous model of community-acquired Staphylococcus aureus skin infections. Infect Immun 81:1306–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien J.E, Blauvelt A., Kolls JK, Cheung AL, Cheng G, Modlin RL, Miller LS. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 2010; 120:1762–1773

  47. McLoughlin RM, Solinga RM, Rich J, Zaleski KJ, Cocchiaro JL, Risley A, Tzianabos AO, Lee JC (2006) CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci U S A 103:10408–10413

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim MH, Granick JL, Kwok C, Walker NJ, Borjesson DL, Curry FR, Miller LS, Simon SI (2011) Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. Blood. 117:3343–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Greenlee-Wacker MC, Rigby KM, Kobayashi SD, Porter AR, DeLeo FR, Nauseef WM (2014) Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. J Immunol 192:4709–4717

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, Granick JL, Matsushima H, Takashima A, Iwakura Y, Cheung AL, Cheng G, Lee DJ, Simon SI, Miller LS (2012) Neutrophil-derived IL-1beta is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 8:e1003047

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fouda A, Hassan SD, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261

    CAS  PubMed  Google Scholar 

  52. Hassan SED, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J BIOL INORG CHEM 24:377–393

  53. Fouda A, Hassan SE, Abdo AM et al (2019) Antimicrobial, Antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biol Trace Elem Res:1–18. https://doi.org/10.1007/s12011-019-01883-4

  54. Hassanen, E. I., Morsy, E. A., Hussien, A. M., Ibrahim, M. A., & Farroh, K. Y. (2020). The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens. Biosci Rep 40(3). https://doi.org/10.1042/BSR20194296

  55. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12(3):789–799

    PubMed  Google Scholar 

  57. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    CAS  PubMed  Google Scholar 

  58. Moritz M, Geszke-Moritz M (2013) The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596–613

    CAS  Google Scholar 

  59. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    CAS  PubMed  Google Scholar 

  60. Huang NM, Lim HN, Radiman S, Khiew PS, Chiu WS, Hashim R, Chia CH (2010) Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties. Colloids Surf A Physicochem Eng Asp 353(1):69–76

    CAS  Google Scholar 

  61. Stevanović MM, Škapin SD, Bračko I, Milenković M, Petković J, Filipič M, Uskoković DP (2012) Poly (lactide-co-glycolide)/silver nanoparticles: synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer 53(14):2818–2828

    Google Scholar 

  62. Ansari M, Khan H, Khan A (2011) Evaluation of antibacterial activity of silver nanoparticles against MSSA and MSRA on isolates from skin infections. Biol Med 3:141–146

    CAS  Google Scholar 

  63. Ayala-Núñez NV, Villegas HH, Turrent LD, Padilla CR (2009) Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnology. 5(1–4):2–9

    Google Scholar 

  64. Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R, Christensen L, Clemons CB, Wilber JP, Young GW, Kang AG (2012) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67(1):138–148

    CAS  PubMed  Google Scholar 

  65. Huang NM, Radiman S, Lim HN, Khiew PS, Chiu WS, Lee KH, Syahida A, Hashim R, Chia CH (2009) γ-Ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties. Chem Eng J 155(1–2):499–507

    CAS  Google Scholar 

  66. Dugal S, Mamajiwala N (2011) A novel strategy to control emerging drug resistant infections. J Chem Pharm Res 3:584–589

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are greatly thankful to Dr. Khaled Y. Farroh for preparation and characterization of nanoparticles.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to conceive the present research idea, performed the experiment, verified the results, drafted, and revised the manuscript.

Corresponding author

Correspondence to Eman Ragab.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanen, E.I., Ragab, E. In Vivo and In Vitro Assessments of the Antibacterial Potential of Chitosan-Silver Nanocomposite Against Methicillin-Resistant Staphylococcus aureus–Induced Infection in Rats. Biol Trace Elem Res 199, 244–257 (2021). https://doi.org/10.1007/s12011-020-02143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02143-6

Keywords

Navigation