Skip to main content

Advertisement

Log in

Endothelial Injury Induces Vascular Smooth Muscle Cell Proliferation in Highly Localized Regions of a Direct Contact Co-culture System

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Though previous studies have indicated a relationship between the proliferation of endothelial cells and vascular smooth muscle cells (VSMCs) in co-culture, the results have been contradictory and the signaling mechanism poorly understood. In this transmembrane co-culture study, VSMCs and endothelial cells were grown to confluence on opposite sides of a microporous membrane to mimic the intima/media border of vessels. The endothelial layer was injured, and then cultured for 3 days, resulting in partial re-endothelialization. VSMC proliferation across from the injured/partially recovered endothelial region was significantly higher than across from the de-endothelialized region (a sevenfold increase) and the uninjured region (a threefold increase). ELISA indicated that PDGF, which was undetectable in uninjured co-culture and homotypic controls, increased after injury and the addition of a piperazinyl-quinazoline carboxamide PDGF receptor inhibitor blocked VSMC proliferation across from the injured/partially recovered region. We conclude that co-culture signaling initiated by endothelial cell injury locally stimulates VSMC proliferation and that this signaling could be mediated by PDGF-BB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Belkin, M., & Whittemore, A. D. (2000). Infrainguinal bypass. In R. B. Rutherford (Ed.), Vascular surgery (5th ed., pp. 998–1018). Philadelphia: W.B. Saunders Company.

    Google Scholar 

  2. Thyberg, J., Blomgren, K., Roy, J., Tran, P. K., & Hedin, U. (1997). Phenotypic modulation of smooth muscle cells after arterial injury is associated with changes in the distribution of laminin and fibronectin. The Journal of Histochemistry and Cytochemistry, 45, 837–846.

    PubMed  CAS  Google Scholar 

  3. Dilley, R. J., McGeachie, J. K., & Prendergast, F. J. (1987). A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis, 63, 99–107.

    Article  PubMed  CAS  Google Scholar 

  4. Painter, T. A. (1991). Myointimal hyperplasia: pathogenesis and implications. 2. Animal injury models and mechanical factors. Artificial Organs, 15, 103–118.

    PubMed  CAS  Google Scholar 

  5. Conte, M. S. (1998). The ideal small arterial substitute: a search for the Holy Grail? The FASEB Journal, 12, 43–45.

    PubMed  CAS  Google Scholar 

  6. Jacot, J. G., Abdullah, I., Belkin, M., Gerhard-Herman, M., Gaccione, P., Polak, J., et al. (2004). Early adaptation of human lower extremity vein grafts: Wall stiffness changes accompany geometric remodeling. Journal of Vascular Surgery, 39, 547–555.

    Article  PubMed  Google Scholar 

  7. Mann, M., Whittemore, A. D., Donaldson, M., Belkin, M., Conte, M. S., Polak, J., et al. (1999). Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet, 354, 1493–1498.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, E. J., & Rothman, M. T. (2003). Antiproliferative coatings for the treatment of coronary heart disease: what are the targets and which are the tools? Journal of Interventional Cardiology, 16, 475–483.

    Article  PubMed  Google Scholar 

  9. Marx, M., Perlmutter, R. A., & Madri, J. A. (1994). Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. The Journal of Clinical Investigation, 93, 131–139.

    Article  PubMed  CAS  Google Scholar 

  10. Levitzki, A. (2005). PDGF receptor kinase inhibitors for the treatment of restenosis. Cardiovascular Research, 65, 581–586.

    Article  PubMed  CAS  Google Scholar 

  11. Fillinger, M. F., Sampson, L. N., Cronenwett, J. L., Powell, R. J., & Wagner, R. J. (1997). Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. The Journal of Surgical Research, 67, 169–178.

    Article  PubMed  CAS  Google Scholar 

  12. Axel, D. I., Brehm, B., Wolburg-Buchholz, K., Betz, E., Koveker, G., & Karsch, K. R. (1996). Induction of cell-rich and lipid-rich plaques in a transfilter coculture system with human vascular cells. Journal of Vascular Research, 33, 327–339.

    Article  PubMed  CAS  Google Scholar 

  13. Axel, D. I., Riessen, R., Athanasiadis, A., Runge, H., Koveker, G., & Karsch, K. R. (1997). Growth factor expression of human arterial smooth muscle cells and endothelial cells in a transfilter coculture system. Journal of Molecular and Cellular Cardiology, 29, 2967–2978.

    Article  PubMed  CAS  Google Scholar 

  14. Hastings, N. E., Simmers, M. B., McDonald, O. G., Wamhoff, B. R., & Blackman, B. R. (2007). Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. American Journal of Physiology Cell Physiology, 293, C1824–C1833.

    Article  PubMed  CAS  Google Scholar 

  15. Isakson, B. E., & Duling, B. R. (2005). Heterocellular contact at the myoendothelial junction influences gap junction organization. Circulation Research, 97, 44–51.

    Article  PubMed  CAS  Google Scholar 

  16. Matsuno, K., Ushiki, J., Seishi, T., Ichimura, M., Giese, N. A., Yu, J. C., et al. (2003). Potent and selective inhibitors of platelet-derived growth factor receptor phosphorylation. 3. Replacement of quinazoline moiety and improvement of metabolic polymorphism of 4-[4-(N-substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline derivatives. Journal of Medicinal Chemistry, 46, 4910–4925.

    Article  PubMed  CAS  Google Scholar 

  17. Lavado, E., Sanchez-Abarca, L. I., Tabernero, A., Bolanos, J. P., & Medina, J. M. (1997). Oleic acid inhibits gap junction permeability and increases glucose uptake in cultured rat astrocytes. Journal of Neurochemistry, 69, 721–728.

    Article  PubMed  CAS  Google Scholar 

  18. Powell, R. J., Cronenwell, J., Fillinger, M., & Wagner, R. (1994). Effect of endothelial cells and transforming growth factor-beta1 on cultured vascular smooth muscle cell growth patterns. Journal of Vascular Surgery, 20, 787–794.

    PubMed  CAS  Google Scholar 

  19. Nugent, M., Karnovsky, M., & Edelman, E. (1993). Vascular cell-derived heparin sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogenesis in vascular smooth muscle cells. Circulation Research, 73, 1051–1060.

    PubMed  CAS  Google Scholar 

  20. Cucina, A., Borrelli, V., Randone, B., Coluccia, P., Sapienza, P., & Cavallaro, A. (2003). Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. Journal of Surgical Research, 109, 16–23.

    Article  PubMed  CAS  Google Scholar 

  21. Rose, S. L., & Babensee, J. E. (2008). Smooth muscle cell phenotype alters cocultured endothelial cell response to biomaterial-pretreated leukocytes. Journal of Biomedical Materials Research Part A, 84, 661–671.

    Article  PubMed  CAS  Google Scholar 

  22. Chiu, J. J., Chen, L. J., Lee, C. I., Lee, P. L., Lee, D. Y., Tsai, M. C., et al. (2007). Mechanisms of induction of endothelial cell E-selectin expression by smooth muscle cells and its inhibition by shear stress. Blood, 110, 519–528.

    Article  PubMed  CAS  Google Scholar 

  23. Lavender, M. D., Pang, Z., Wallace, C. S., Niklason, L. E., & Truskey, G. A. (2005). A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials, 26, 4642–4653.

    Article  PubMed  CAS  Google Scholar 

  24. Leung, B. M., & Sefton, M. V. (2007). A modular tissue engineering construct containing smooth muscle cells and endothelial cells. Annals of Biomedical Engineering, 35, 2039–2049.

    Article  PubMed  Google Scholar 

  25. Chen, D., Walsh, K., & Wang, J. (2000). Regulation of cdk2 activity in endothelial cells that are inhibited from growth by cell contact. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 629–635.

    PubMed  CAS  Google Scholar 

  26. Ettenson, D. S., & Gotlieb, A. I. (1994). Endothelial wounds with disruption in cell migration repair primarily by cell proliferation. Microvascular Research, 48, 328–337.

    Article  PubMed  CAS  Google Scholar 

  27. Farooqui, R., & Fenteany, G. (2005). Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. Journal of Cell Science, 118, 51–63.

    Article  PubMed  CAS  Google Scholar 

  28. Stavri, G. T., Zachary, I., Baskerville, P. A., Martin, J. F., & Erusalimsky, J. D. (1995). Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells: Synergistic interaction with hypoxia. Circulation, 92, 11–14.

    PubMed  CAS  Google Scholar 

  29. Zachary, I. (2001). Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. American Journal of Physiology Cell Physiology, 280, C1375–C1386.

    PubMed  CAS  Google Scholar 

  30. Tanner, F. C., Meier, P., Greutert, H., Champion, C., Nabel, E. G., & Luscher, T. F. (2000). Nitric oxide modulates expression of cell cycle regulatory proteins: A cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation, 101, 1982–1989.

    PubMed  CAS  Google Scholar 

  31. Napoli, C., & Ignarro, L. J. (2001). Nitric oxide and atherosclerosis. Nitric Oxide, 5, 88–97.

    Article  PubMed  CAS  Google Scholar 

  32. Dora, K. A. (2001). Cell-cell communication in the vessel wall. Vascular Medicine, 6, 43–50.

    PubMed  CAS  Google Scholar 

  33. Lindner, V., & Reidy, M. A. (1995). Platelet-derived growth factor ligand and receptor expression by large vessel endothelium in vivo. American Journal of Pathology, 146, 1488–1497.

    PubMed  CAS  Google Scholar 

  34. Lindner, V., Giachelli, C. M., Schwartz, S. M., & Reidy, M. A. (1995). A subpopulation of smooth muscle cells in injured rat arteries expresses platelet-derived growth factor-B chain mRNA. Circulation Research, 76, 951–957.

    PubMed  CAS  Google Scholar 

  35. Ferns, G. A., Raines, E. W., Sprugel, K. H., Motani, A. S., Reidy, M. A., & Ross, R. (1991). Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science, 253, 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  36. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., & Betsholtz, C. (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126, 3047–3055.

    PubMed  CAS  Google Scholar 

  37. Fredriksson, L., Li, H., & Eriksson, U. (2004). The PDGF family: four gene products form five dimeric isoforms. Cytokine & Growth Factor Reviews, 15, 197–204.

    Article  CAS  Google Scholar 

  38. Little, T. L., Xia, J., & Duling, B. R. (1995). Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circulation Research, 76, 498–504.

    PubMed  CAS  Google Scholar 

  39. Christ, G. J., Spray, D. C., el-Sabban, M., Moore, L. K., & Brink, P. R. (1996). Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circulation Research, 79, 631–646.

    PubMed  CAS  Google Scholar 

  40. Deglise, S., Martin, D., Probst, H., Saucy, F., Hayoz, D., Waeber, G., et al. (2005). Increased connexin43 expression in human saphenous veins in culture is associated with intimal hyperplasia. Journal of Vascular Surgery, 41, 1043–1052.

    Article  PubMed  Google Scholar 

  41. Isakson, B. E., Ramos, S. I., & Duling, B. R. (2007). Ca2+ and inositol 1, 4, 5-trisphosphate-mediated signaling across the myoendothelial junction. Circulation Research, 100, 246–254.

    Article  PubMed  CAS  Google Scholar 

  42. Li, W. E., Waldo, K., Linask, K. L., Chen, T., Wessels, A., Parmacek, M. S., et al. (2002). An essential role for connexin43 gap junctions in mouse coronary artery development. Development, 129, 2031–2042.

    PubMed  CAS  Google Scholar 

  43. Fisher, W. E., Boros, L. G., & Schirmer, W. J. (1995). Reversal of enhanced pancreatic cancer growth in diabetes by insulin. Surgery, 118, 453–457.

    Article  PubMed  CAS  Google Scholar 

  44. Bornfeldt, K. E., Raines, E. W., Graves, L. M., Skinner, M. P., Krebs, E. G., & Ross, R. (1995). Platelet-derived growth factor. Distinct signal transduction pathways associated with migration versus proliferation. Annals of the New York Academy of Sciences, 766, 416–430.

    Article  PubMed  CAS  Google Scholar 

  45. Nackman, G. B., Fillinger, M. F., Shafritz, R., Wei, T., & Graham, A. M. (1998). Flow modulates endothelial regulation of smooth muscle cell proliferation: A new model. Surgery, 124, 353–360. discussion 360–1.

    PubMed  CAS  Google Scholar 

  46. Sakamoto, N., Ohashi, T., & Sato, M. (2006). Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model. Annals of Biomedical Engineering, 34, 408–415.

    Article  PubMed  Google Scholar 

  47. Wang, H. Q., Huang, L. X., Qu, M. J., Yan, Z. Q., Liu, B., Shen, B. R., et al. (2006). Shear stress protects against endothelial regulation of vascular smooth muscle cell migration in a coculture system. Endothelium, 13, 171–180.

    Article  PubMed  CAS  Google Scholar 

  48. Redmond, E. M., Cullen, J. P., Cahill, P. A., Sitzmann, J. V., Stefansson, S., Lawrence, D. A., et al. (2001). Endothelial cells inhibit flow-induced smooth muscle cell migration: Role of plasminogen activator inhibitor-1. Circulation, 103, 597–603.

    PubMed  CAS  Google Scholar 

  49. Palumbo, R., Gaetano, C., Antonini, A., Pompilio, G., Bracco, E., Ronnstrand, L., et al. (2002). Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells: Consequences for smooth muscle cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 405–411.

    Article  PubMed  CAS  Google Scholar 

  50. Aromatario, C., Sterpetti, A. V., Palumbo, R., Patrizi, A. L., Di Carlo, A., Proietti, P., et al. (1997). Fluid shear stress increases the release of platelet derived growth factor BB (PDGF BB) by aortic endothelial cells. Minerva Cardioangiologica, 45, 1–7.

    PubMed  CAS  Google Scholar 

  51. Dardik, A., Yamashita, A., Aziz, F., Asada, H., & Sumpio, B. E. (2005). Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1alpha. Journal of Vascular Surgery, 41, 321–331.

    Article  PubMed  Google Scholar 

  52. DePaola, N., Davies, P. F., Pritchard, W. F., Jr., Florez, L., Harbeck, N., & Polacek, D. C. (1999). Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proceedings of the National Academy of Sciences of the United States of America, 96, 3154–3159.

    Article  PubMed  CAS  Google Scholar 

  53. Inai, T., Mancuso, M. R., McDonald, D. M., Kobayashi, J., Nakamura, K., & Shibata, Y. (2004). Shear stress-induced upregulation of connexin 43 expression in endothelial cells on upstream surfaces of rat cardiac valves. Histochemistry and Cell Biology, 122, 477–483.

    Article  PubMed  CAS  Google Scholar 

  54. Cowan, D. B., Lye, S. J., & Langille, B. L. (1998). Regulation of vascular connexin43 gene expression by mechanical loads. Circulation Research, 82, 786–793.

    PubMed  CAS  Google Scholar 

  55. Johnson, T. L., & Nerem, R. M. (2007). Endothelial connexin 37, connexin 40, and connexin 43 respond uniquely to substrate and shear stress. Endothelium, 14, 215–226.

    PubMed  CAS  Google Scholar 

  56. Chiu, J. J., Chen, L. J., Lee, P. L., Lee, C. I., Lo, L. W., Usami, S., et al. (2003). Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood, 101, 2667–2674.

    Article  PubMed  CAS  Google Scholar 

  57. Chiu, J. J., Chen, L. J., Chen, C. N., Lee, P. L., & Lee, C. I. (2004). A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. Journal of Biomechanics, 37, 531–539.

    Article  PubMed  Google Scholar 

  58. Chiu, J. J., Chen, L. J., Chang, S. F., Lee, P. L., Lee, C. I., Tsai, M. C., et al. (2005). Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: Role of NF-kappaB. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 963–969.

    Article  PubMed  CAS  Google Scholar 

  59. Kristek, F., & Gerova, M. (1992). Myoendothelial relations in the conduit coronary artery of the dog and rabbit. Journal of Vascular Research, 29, 29–32.

    PubMed  CAS  Google Scholar 

  60. Sosa-Melgarejo, J. A., & Berry, C. L. (1992). Myoendothelial contacts in the thoracic aorta of rat fetuses. Journal of Pathology, 166, 311–316.

    Article  PubMed  CAS  Google Scholar 

  61. Sosa-Melgarejo, J. A., & Berry, C. L. (1995). Myoendothelial contacts in the human fetal aorta. Archives of Medical Research, 26, 431–435.

    PubMed  CAS  Google Scholar 

  62. Sosa-Melgarejo, J. A., Berry, C. L., & Dodd, S. (1988). Myoendothelial contacts in the small arterioles of human kidney. Virchows Archiv. A, Pathological Anatomy and Histopathology, 413, 183–187.

    Article  PubMed  CAS  Google Scholar 

  63. Sosa-Melgarejo, J. A., & Berry, C. L. (1992). Myoendothelial contacts in arteriolosclerosis. Journal of Pathology, 167, 235–239.

    Article  PubMed  CAS  Google Scholar 

  64. Haas, T. L., & Duling, B. R. (1997). Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvascular Research, 53, 113–120.

    Article  PubMed  CAS  Google Scholar 

  65. Sandow, S. L., & Hill, C. E. (2000). Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circulation Research, 86, 341–346.

    PubMed  CAS  Google Scholar 

  66. Griffith, T. M., Chaytor, A. T., Bakker, L. M., & Edwards, D. H. (2005). 5-Methyltetrahydrofolate and tetrahydrobiopterin can modulate electrotonically mediated endothelium-dependent vascular relaxation. Proceedings of the National Academy of Sciences of the United States of America, 102, 7008–7013.

    Article  PubMed  CAS  Google Scholar 

  67. Martin, P. E., Wall, C., & Griffith, T. M. (2005). Effects of connexin-mimetic peptides on gap junction functionality and connexin expression in cultured vascular cells. British Journal of Pharmacology, 144, 617–627.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Cook and M. Nugent for helpful discussions, E. Bartolak-Suki for critical reading of the manuscript, and C. Piron and E. Cosgrove for technical assistance with image analysis. This work was supported by the National Institute of Health (R01 HL72900-01), NASA (NAG9-1558) and a National Science Foundation CAREER Award (BES-9985338) to J.Y.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey G. Jacot or Joyce Y. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacot, J.G., Wong, J.Y. Endothelial Injury Induces Vascular Smooth Muscle Cell Proliferation in Highly Localized Regions of a Direct Contact Co-culture System. Cell Biochem Biophys 52, 37–46 (2008). https://doi.org/10.1007/s12013-008-9023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9023-6

Keywords

Navigation