Skip to main content
Log in

Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hallaq, H., Smith, T. W., & Leaf, A. (1992). Modulation of dihydropyridine-sensitive calcium channels in heart cells by fish oil fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 89, 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  2. Shimada, T., & Somlyo, A. P. (1992). Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. The Journal of General Physiology, 100, 27–44.

    Article  PubMed  CAS  Google Scholar 

  3. Huang, J. M., Xian, H., & Bacaner, M. (1992). Long-chain fatty acids activate calcium channels in ventricular myocytes. Proceedings of the National Academy of Sciences of the United States of America, 89, 6452–6456.

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt, D., Jiang, Q. X., & MacKinnon, R. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature, 444, 775–779.

    Article  PubMed  CAS  Google Scholar 

  5. Sheetz, M. P., & Singer, S. J. (1974). Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proceedings of the National Academy of Sciences of the United States of America, 71, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  6. Devaux, P. F. (1992). Protein involvement in transmembrane lipid asymmetry. Annual Review of Biophysics and Biomolecular Structure, 21, 417–439.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, A. G. (2004). How lipids affect the activities of integral membrane proteins. Biochimica et Biophysica Acta, 1666, 62–87.

    Article  PubMed  CAS  Google Scholar 

  8. Zimmerberg, J., & Gawrisch, K. (2006). The physical chemistry of biological membranes. Nature Chemical Biology, 2, 564–567.

    Article  PubMed  CAS  Google Scholar 

  9. Feller, S. E., & Gawrisch, K. (2005). Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin. Current Opinion in Structural Biology, 15, 416–422.

    Article  PubMed  CAS  Google Scholar 

  10. Frank, C. L., Dierenfeld, E. S., & Storey, K. B. (1998). The relationship between lipid peroxidation, hibernation, and food selection in mammals. American Zoologist, 38, 341–349.

    CAS  Google Scholar 

  11. Jakobsson, A., Westerberg, R., & Jacobsson, A. (2006). Fatty acid elongases in mammals: Their regulation and roles in metabolism. Progress in Lipid Research, 45, 237–249.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, Y., Bang, H., Gnatenco, C., & Kim, D. (2001). Synergistic interaction and the role of C-terminus in the activation of TRAAK K+ channels by pressure, free fatty acids and alkali. Pflugers Archiv: European Journal of Physiology, 442, 64–72.

    Article  PubMed  CAS  Google Scholar 

  13. Moore, S. A., Yoder, E., Murphy, S., Dutton, G. R., & Spector, A. A. (1991). Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). Journal of Neurochemistry, 56, 518–524.

    Article  PubMed  CAS  Google Scholar 

  14. Chung, W. L., Chen, J. J., & Su, H. M. (2008). Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. The Journal of Nutrition, 138, 1165–1171.

    PubMed  CAS  Google Scholar 

  15. Leaf, A., Kang, J. X., & Xiao, Y. F. (2008). Fish oil fatty acids as cardiovascular drugs. Current Vascular Pharmacology, 6, 1–12.

    Article  PubMed  CAS  Google Scholar 

  16. Brenna, J. T., & Diau, G. Y. (2007). The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukotrienes and Essential Fatty Acids, 77, 247–250.

    Article  CAS  Google Scholar 

  17. Mozaffarian, D., & Rimm, E. B. (2006). Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA: The Journal of the American Medical Association, 296, 1885–1899.

    Article  CAS  Google Scholar 

  18. Stone, N. J. (1996). Fish consumption, fish oil, lipids, and coronary heart disease. Circulation, 94, 2337–2340.

    PubMed  CAS  Google Scholar 

  19. Bazan, N. G. (2006). Cell survival matters: Docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends in Neurosciences, 29, 263–271.

    Article  PubMed  CAS  Google Scholar 

  20. Piomelli, D., Astarita, G., & Rapaka, R. (2007). A neuroscientist’s guide to lipidomics. Nature Reviews Neuroscience, 8, 743–754.

    Article  PubMed  CAS  Google Scholar 

  21. Farooqui, A. A., & Horrocks, L. A. (2004). Brain phospholipases A2: A perspective on the history. Prostaglandins Leukotrienes and Essential Fatty Acids, 71, 161–169.

    Article  CAS  Google Scholar 

  22. Bazan, N. G. (2005). Synaptic signaling by lipids in the life and death of neurons. Molecular Neurobiology, 31, 219–230.

    Article  PubMed  CAS  Google Scholar 

  23. Calabrese, B., Tabarean, I. V., Juranka, P., & Morris, C. E. (2002). Mechanosensitivity of N-type calcium channel currents. Biophysical Journal, 83, 2560–2574.

    PubMed  CAS  Google Scholar 

  24. Tassoni, D., Kaur, G., Weisinger, R. S., & Sinclair, A. J. (2008). The role of eicosanoids in the brain. Asia Pacific Journal of Clinical Nutrition, 17(Suppl 1), 220–228.

    PubMed  CAS  Google Scholar 

  25. Musiek, E. S., Brooks, J. D., Joo, M., Brunoldi, E., Porta, A., Zanoni, G., et al. (2008). Electrophilic cyclopentenone neuroprostanes are anti-inflammatory mediators formed from the peroxidation of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. The Journal of Biological Chemistry, 283, 19927–19935.

    Article  PubMed  CAS  Google Scholar 

  26. Khanapure, S. P., Garvey, D. S., Janero, D. R., & Letts, L. G. (2007). Eicosanoids in inflammation: Biosynthesis, pharmacology, and therapeutic frontiers. Current Topics in Medicinal Chemistry, 7, 311–340.

    Article  PubMed  CAS  Google Scholar 

  27. Devane, W. A., & Axelrod, J. (1994). Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proceedings of the National Academy of Sciences of the United States of America, 91, 6698–6701.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, H. I., Kim, T. H., Shin, Y. K., Lee, C. S., Park, M., & Song, J. H. (2005). Anandamide suppression of Na+ currents in rat dorsal root ganglion neurons. Brain Research, 1062, 39–47.

    Article  PubMed  CAS  Google Scholar 

  29. Oz, M. (2006). Receptor-independent effects of endocannabinoids on ion channels. Current Pharmaceutical Design, 12, 227–239.

    Article  PubMed  CAS  Google Scholar 

  30. Yellen, G. (2002). The voltage-gated potassium channels and their relatives. Nature, 419, 35–42.

    Article  PubMed  CAS  Google Scholar 

  31. Ashcroft, F. M. (2000). Voltage-gated K+ channels. In Ion channels and disease (pp. 97–123). London: Academic Press.

  32. Hille, B. (2001). Potassium channels and chloride channels. In B. Hille (Ed.), Ion channels of excitable membranes (pp. 131–167). Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  33. Long, S. B., Campbell, E. B., & Mackinnon, R. (2005). Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science, 309, 903–908.

    Article  PubMed  CAS  Google Scholar 

  34. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., & MacKinnon, R. (2002). The open pore conformation of potassium channels. Nature, 417, 523–526.

    Article  PubMed  CAS  Google Scholar 

  35. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., et al. (1998). The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science, 280, 69–77.

    Article  PubMed  CAS  Google Scholar 

  36. Aldrich, R. W. (2001). Fifty years of inactivation. Nature, 411, 643–644.

    Article  PubMed  CAS  Google Scholar 

  37. Latorre, R., & Brauchi, S. (2006). Large conductance Ca2+-activated K+ (BK) channel: Activation by Ca2+ and voltage. Biological Research, 39, 385–401.

    PubMed  CAS  Google Scholar 

  38. Piskorowski, R., & Aldrich, R. W. (2002). Calcium activation of BKCa potassium channels lacking the calcium bowl and RCK domains. Nature, 420, 499–502.

    Article  PubMed  CAS  Google Scholar 

  39. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., & MacKinnon, R. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 417, 515–522.

    Article  PubMed  CAS  Google Scholar 

  40. Yusifov, T., Savalli, N., Gandhi, C. S., Ottolia, M., & Olcese, R. (2008). The RCK2 domain of the human BKCa channel is a calcium sensor. Proceedings of the National Academy of Sciences of the United States of America, 105, 376–381.

    Article  PubMed  CAS  Google Scholar 

  41. McManus, O. B., Helms, L. M., Pallanck, L., Ganetzky, B., Swanson, R., & Leonard, R. J. (1995). Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron, 14, 645–650.

    Article  PubMed  CAS  Google Scholar 

  42. Cox, D. H., & Aldrich, R. W. (2000). Role of the β1 subunit in large-conductance Ca2+-activated K+ channel gating energetics mechanisms of enhanced Ca2+ sensitivity. The Journal of General Physiology, 116, 411–432.

    Article  PubMed  CAS  Google Scholar 

  43. Sun, X., Zhou, D., Zhang, P., Moczydlowski, E. G., & Haddad, G. G. (2007). Beta-subunit-dependent modulation of hSlo BK current by arachidonic acid. Journal of Neurophysiology, 97, 62–69.

    Article  PubMed  CAS  Google Scholar 

  44. Stocker, M. (2004). Ca2+-activated K+ channels: Molecular determinants and function of the SK family. Nature Reviews Neuroscience, 5, 758–770.

    Article  PubMed  CAS  Google Scholar 

  45. Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., et al. (1998). Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature, 395, 503–507.

    Article  PubMed  CAS  Google Scholar 

  46. Ashcroft, F. M. (2000). Ca2+ -activated K+ channels. In Ion channels and disease (pp. 125–133). London: Academic Press.

  47. Hamilton, K. L., Syme, C. A., & Devor, D. C. (2003). Molecular localization of the inhibitory arachidonic acid binding site to the pore of hIK1. The Journal of Biological Chemistry, 278, 16690–16697.

    Article  PubMed  CAS  Google Scholar 

  48. Herrmann, S., Stieber, J., & Ludwig, A. (2007). Pathophysiology of HCN channels. Pflugers Archiv. European Journal of Physiology, 454, 517–522.

    Article  PubMed  CAS  Google Scholar 

  49. Siu, C. W., Lieu, D. K., & Li, R. A. (2006). HCN-encoded pacemaker channels: From physiology and biophysics to bioengineering. The Journal of Membrane Biology, 214, 115–122.

    Article  PubMed  CAS  Google Scholar 

  50. Mannikko, R., Elinder, F., & Larsson, H. P. (2002). Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature, 419, 837–841.

    Article  PubMed  CAS  Google Scholar 

  51. Rosenbaum, T., & Gordon, S. E. (2004). Quickening the pace: Looking into the heart of HCN channels. Neuron, 42, 193–196.

    Article  PubMed  CAS  Google Scholar 

  52. Vemana, S., Pandey, S., & Larsson, H. P. (2004). S4 movement in a mammalian HCN channel. The Journal of General Physiology, 123, 21–32.

    Article  PubMed  CAS  Google Scholar 

  53. Schmitt, H., & Meves, H. (1995). Modulation of neuronal calcium channels by arachidonic acid and related substances. The Journal of Membrane Biology, 145, 233–244.

    Article  PubMed  CAS  Google Scholar 

  54. Chemin, J., Monteil, A., Perez-Reyes, E., Nargeot, J., & Lory, P. (2001). Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. The EMBO Journal, 20, 7033–7040.

    Article  PubMed  CAS  Google Scholar 

  55. Danthi, S. J., Enyeart, J. A., & Enyeart, J. J. (2005). Modulation of native T-type calcium channels by omega-3 fatty acids. Biochemical and Biophysical Research Communications, 327, 485–493.

    Article  PubMed  CAS  Google Scholar 

  56. Chemin, J., Nargeot, J., & Lory, P. (2007). Chemical determinants involved in anandamide-induced inhibition of T-type calcium channels. The Journal of Biological Chemistry, 282, 2314–2323.

    Article  PubMed  CAS  Google Scholar 

  57. Talavera, K., Staes, M., Janssens, A., Droogmans, G., & Nilius, B. (2004). Mechanism of arachidonic acid modulation of the T-type Ca2+ channel α1G. The Journal of General Physiology, 124, 225–238.

    Article  PubMed  CAS  Google Scholar 

  58. Liu, L., & Rittenhouse, A. R. (2000). Effects of arachidonic acid on unitary calcium currents in rat sympathetic neurons. The Journal of Physiology, 525(Pt 2), 391–404.

    Article  PubMed  CAS  Google Scholar 

  59. Guo, J., & Ikeda, S. R. (2004). Endocannabinoids modulate N-type calcium channels and G-protein-coupled inwardly rectifying potassium channels via CB1 cannabinoid receptors heterologously expressed in mammalian neurons. Molecular Pharmacology, 65, 665–674.

    Article  PubMed  CAS  Google Scholar 

  60. Liu, L., & Rittenhouse, A. R. (2003). Arachidonic acid mediates muscarinic inhibition and enhancement of N-type Ca2+ current in sympathetic neurons. Proceedings of the National Academy of Sciences of the United States of America, 100, 295–300.

    Article  PubMed  CAS  Google Scholar 

  61. Liu, L., Roberts, M. L., & Rittenhouse, A. R. (2004). Phospholipid metabolism is required for M1 muscarinic inhibition of N-type calcium current in sympathetic neurons. European Biophysics Journal, 33, 255–264.

    Article  PubMed  CAS  Google Scholar 

  62. Ferrier, G. R., Redondo, I., Zhu, J., & Murphy, M. G. (2002). Differential effects of docosahexaenoic acid on contractions and L-type Ca2+ current in adult cardiac myocytes. Cardiovascular Research, 54, 601–610.

    Article  PubMed  CAS  Google Scholar 

  63. Hazama, H., Nakajima, T., Asano, M., Iwasawa, K., Morita, T., Igarashi, K., et al. (1998). Omega-3 polyunsaturated fatty acids-modulation of voltage-dependent L-type Ca2+ current in guinea-pig tracheal smooth muscle cells. European Journal of Pharmacology, 355, 257–266.

    Article  PubMed  CAS  Google Scholar 

  64. Bringmann, A., Schopf, S., Faude, F., & Reichenbach, A. (2001). Arachidonic acid-induced inhibition of Ca2+ channel currents in retinal glial (Müller) cells. Graefe’s Archive for Clinical and Experimental Ophthalmology, 239, 859–864.

    Article  PubMed  CAS  Google Scholar 

  65. Xiao, Y. F., Sigg, D. C., & Leaf, A. (2005). The antiarrhythmic effect of n-3 polyunsaturated fatty acids: Modulation of cardiac ion channels as a potential mechanism. The Journal of Membrane Biology, 206, 141–154.

    Article  PubMed  CAS  Google Scholar 

  66. Leifert, W. R., McMurchie, E. J., & Saint, D. A. (1999). Inhibition of cardiac sodium currents in adult rat myocytes by n–3 polyunsaturated fatty acids. The Journal of Physiology, 520(Pt 3), 671–679.

    Article  PubMed  CAS  Google Scholar 

  67. Kang, J. X., Xiao, Y. F., & Leaf, A. (1995). Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 92, 3997–4001.

    Article  PubMed  CAS  Google Scholar 

  68. Kang, J. X., & Leaf, A. (1996). Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. Proceedings of the National Academy of Sciences of the United States of America, 93, 3542–3546.

    Article  PubMed  CAS  Google Scholar 

  69. Bendahhou, S., Cummins, T. R., & Agnew, W. S. (1997). Mechanism of modulation of the voltage-gated skeletal and cardiac muscle sodium channels by fatty acids. The American Journal of Physiology, 272, C592–C600.

    PubMed  CAS  Google Scholar 

  70. Jo, T., Iida, H., Kishida, S., Imuta, H., Oonuma, H., Nagata, T., et al. (2005). Acute and chronic effects of eicosapentaenoic acid on voltage-gated sodium channel expressed in cultured human bronchial smooth muscle cells. Biochemical and Biophysical Research Communications, 331, 1452–1459.

    Article  PubMed  CAS  Google Scholar 

  71. Pignier, C., Revenaz, C., Rauly-Lestienne, I., Cussac, D., Delhon, A., Gardette, J., et al. (2007). Direct protective effects of poly-unsaturated fatty acids, DHA and EPA, against activation of cardiac late sodium current: A mechanism for ischemia selectivity. Basic Research in Cardiology, 102, 553–564.

    Article  PubMed  CAS  Google Scholar 

  72. Xiao, Y. F., Ma, L., Wang, S. Y., Josephson, M. E., Wang, G. K., Morgan, J. P., et al. (2006). Potent block of inactivation-deficient Na+ channels by n–3 polyunsaturated fatty acids. American Journal of Physiology. Cell Physiology, 290, C362–C370.

    Article  PubMed  CAS  Google Scholar 

  73. Leaf, A., Xiao, Y. F., & Kang, J. X. (2002). Interactions of n-3 fatty acids with ion channels in excitable tissues. Prostaglandins Leukotrienes and Essential Fatty Acids, 67, 113–120.

    Article  CAS  Google Scholar 

  74. Doolan, G. K., Panchal, R. G., Fonnes, E. L., Clarke, A. L., Williams, D. A., & Petrou, S. (2002). Fatty acid augmentation of the cardiac slowly activating delayed rectifier current (IKs) is conferred by hminK. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 16, 1662–1664.

    CAS  Google Scholar 

  75. Sade, H., Muraki, K., Ohya, S., Hatano, N., & Imaizumi, Y. (2006). Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. American Journal of Physiology. Cell Physiology, 290, C77–C86.

    Article  PubMed  CAS  Google Scholar 

  76. Clarke, A. L., Petrou, S., Walsh, J. V., Jr, & Singer, J. J. (2002). Modulation of BKCa channel activity by fatty acids: Structural requirements and mechanism of action. American Journal of Physiology. Cell Physiology, 283, C1441–C1453.

    PubMed  CAS  Google Scholar 

  77. Dryer, L., Xu, Z., & Dryer, S. E. (1998). Arachidonic acid-sensitive A-currents and multiple Kv4 transcripts are expressed in chick ciliary ganglion neurons. Brain Research, 789, 162–166.

    Article  PubMed  CAS  Google Scholar 

  78. Angelova, P., & Müller, W. (2006). Oxidative modulation of the transient potassium current IA by intracellular arachidonic acid in rat CA1 pyramidal neurons. The European Journal of Neuroscience, 23, 2375–2384.

    Article  PubMed  Google Scholar 

  79. Kehl, S. J. (2001). Eicosatetraynoic acid (ETYA), a non-metabolizable analogue of arachidonic acid, blocks the fast-inactivating potassium current of rat pituitary melanotrophs. Canadian Journal of Physiology and Pharmacology, 79, 338–345.

    Article  PubMed  CAS  Google Scholar 

  80. Ramakers, G. M., & Storm, J. F. (2002). A postsynaptic transient K+ current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 10144–10149.

    Article  PubMed  CAS  Google Scholar 

  81. Honore, E., Barhanin, J., Attali, B., Lesage, F., & Lazdunski, M. (1994). External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 91, 1937–1941.

    Article  PubMed  CAS  Google Scholar 

  82. Villarroel, A., & Schwarz, T. L. (1996). Inhibition of the Kv4 (Shal) family of transient K+ currents by arachidonic acid. The Journal of Neuroscience, 16, 2522–2532.

    PubMed  CAS  Google Scholar 

  83. Holmqvist, M. H., Cao, J., Knoppers, M. H., Jurman, M. E., Distefano, P. S., Rhodes, K. J., et al. (2001). Kinetic modulation of Kv4-mediated A-current by arachidonic acid is dependent on potassium channel interacting proteins. The Journal of Neuroscience, 21, 4154–4161.

    PubMed  CAS  Google Scholar 

  84. Visentin, S., & Levi, G. (1998). Arachidonic acid-induced inhibition of microglial outward-rectifying K+ current. Glia, 22, 1–10.

    Article  PubMed  CAS  Google Scholar 

  85. Smirnov, S. V., & Aaronson, P. I. (1996). Modulatory effects of arachidonic acid on the delayed rectifier K+ current in rat pulmonary arterial myocytes. structural aspects and involvement of protein kinase C. Circulation Research, 79, 20–31.

    PubMed  CAS  Google Scholar 

  86. Poling, J. S., Karanian, J. W., Salem, N., Jr, & Vicini, S. (1995). Time- and voltage-dependent block of delayed rectifier potassium channels by docosahexaenoic acid. Molecular Pharmacology, 47, 381–390.

    PubMed  CAS  Google Scholar 

  87. Keros, S., & McBain, C. J. (1997). Arachidonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons. The Journal of Neuroscience, 17, 3476–3487.

    PubMed  CAS  Google Scholar 

  88. Oliver, D., Lien, C. C., Soom, M., Baukrowitz, T., Jonas, P., & Fakler, B. (2004). Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science, 304, 265–270.

    Article  PubMed  CAS  Google Scholar 

  89. Fogle, K. J., Lyashchenko, A. K., Turbendian, H. K., & Tibbs, G. R. (2007). HCN pacemaker channel activation is controlled by acidic lipids downstream of diacylglycerol kinase and phospholipase A2. The Journal of Neuroscience, 27, 2802–2814.

    Article  PubMed  CAS  Google Scholar 

  90. Colbert, C. M., & Pan, E. (1999). Arachidonic acid reciprocally alters the availability of transient and sustained dendritic K(+) channels in hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 19, 8163–8171.

    PubMed  CAS  Google Scholar 

  91. Song, C., Manku, M. S., & Horrobin, D. F. (2008). Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. The Journal of Nutrition, 138, 954–963.

    PubMed  CAS  Google Scholar 

  92. Johnston, D., Hoffman, D. A., Magee, J. C., Poolos, N. P., Watanabe, S., Colbert, C. M., et al. (2000). Dendritic potassium channels in hippocampal pyramidal neurons. The Journal of Physiology, 525(Pt 1), 75–81.

    Article  PubMed  CAS  Google Scholar 

  93. Tkatch, T., Baranauskas, G., & Surmeier, D. J. (2000). Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. The Journal of Neuroscience, 20, 579–588.

    PubMed  CAS  Google Scholar 

  94. Liss, B., Franz, O., Sewing, S., Bruns, R., Neuhoff, H., & Roeper, J. (2001). Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. The EMBO Journal, 20, 5715–5724.

    Article  PubMed  CAS  Google Scholar 

  95. Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.

    Article  PubMed  CAS  Google Scholar 

  96. Wolf, M. J., Izumi, Y., Zorumski, C. F., & Gross, R. W. (1995). Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Letters, 377, 358–362.

    Article  PubMed  CAS  Google Scholar 

  97. Fujita, S., Ikegaya, Y., Nishikawa, M., Nishiyama, N., & Matsuki, N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. British Journal of Pharmacology, 132, 1417–1422.

    Article  PubMed  CAS  Google Scholar 

  98. Kato, K., Uruno, K., Saito, K., & Kato, H. (1991). Both arachidonic acid and 1-oleoyl–2-acetyl glycerol in low magnesium solution induce long-term potentiation in hippocampal CA1 neurons in vitro. Brain Research, 563, 94–100.

    Article  PubMed  CAS  Google Scholar 

  99. Nishizaki, T., Nomura, T., Matsuoka, T., & Tsujishita, Y. (1999). Arachidonic acid as a messenger for the expression of long-term potentiation. Biochemical and Biophysical Research Communications, 254, 446–449.

    Article  PubMed  CAS  Google Scholar 

  100. Taylor, A. L., & Hewett, S. J. (2002). Potassium-evoked glutamate release liberates arachidonic acid from cortical neurons. The Journal of Biological Chemistry, 277, 43881–43887.

    Article  PubMed  CAS  Google Scholar 

  101. Strokin, M., Sergeeva, M., & Reiser, G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. British Journal of Pharmacology, 139, 1014–1022.

    Article  PubMed  CAS  Google Scholar 

  102. Schaeffer, E. L., & Gattaz, W. F. (2005). Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology, 181, 392–400.

    Article  PubMed  CAS  Google Scholar 

  103. Carrie, I., Smirnova, M., Clement, M., DE, J. D., Frances, H., & Bourre, J. M. (2002). Docosahexaenoic acid-rich phospholipid supplementation: Effect on behavior, learning ability, and retinal function in control and n-3 polyunsaturated fatty acid deficient old mice. Nutritional Neuroscience, 5, 43–52.

    Article  PubMed  CAS  Google Scholar 

  104. Lynch, M. A., & Voss, K. L. (1994). Membrane arachidonic acid concentration correlates with age and induction of long-term potentiation in the dentate gyrus in the rat. The European Journal of Neuroscience, 6, 1008–1014.

    Article  PubMed  CAS  Google Scholar 

  105. Kotani, S., Sakaguchi, E., Warashina, S., Matsukawa, N., Ishikura, Y., Kiso, Y., et al. (2006). Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neuroscience Research, 56, 159–164.

    Article  PubMed  CAS  Google Scholar 

  106. Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  107. Bazan, N. G., Tu, B., & Rodriguez de Turco, E. B. (2002). What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis. Progress in Brain Research, 135, 175–185.

    Article  PubMed  CAS  Google Scholar 

  108. Lauritzen, I., Blondeau, N., Heurteaux, C., Widmann, C., Romey, G., & Lazdunski, M. (2000). Polyunsaturated fatty acids are potent neuroprotectors. The EMBO Journal, 19, 1784–1793.

    Article  PubMed  CAS  Google Scholar 

  109. Xiao, Y. F., Gomez, A. M., Morgan, J. P., Lederer, W. J., & Leaf, A. (1997). Suppression of voltage-gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Proceedings of the National Academy of Sciences of the United States of America, 94, 4182–4187.

    Article  PubMed  CAS  Google Scholar 

  110. Kang, J. X., & Leaf, A. (2000). Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. The American Journal of Clinical Nutrition, 71, 202S–207S.

    PubMed  CAS  Google Scholar 

  111. Kim, D., & Clapham, D. E. (1989). Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science, 244, 1174–1176.

    Article  PubMed  CAS  Google Scholar 

  112. Twitchell, W. A., Pena, T. L., & Rane, S. G. (1997). Ca2+-dependent K+ channels in bovine adrenal chromaffin cells are modulated by lipoxygenase metabolites of arachidonic acid. The Journal of Membrane Biology, 158, 69–75.

    Article  PubMed  CAS  Google Scholar 

  113. Lee, G. Y., Shin, Y. K., Lee, C. S., & Song, J. H. (2002). Effects of arachidonic acid on sodium currents in rat dorsal root ganglion neurons. Brain Research, 950, 95–102.

    Article  PubMed  CAS  Google Scholar 

  114. Jude, S., Bedut, S., Roger, S., Pinault, M., Champeroux, P., White, E., et al. (2003). Peroxidation of docosahexaenoic acid is responsible for its effects on ITO and ISS in rat ventricular myocytes. British Journal of Pharmacology, 139, 816–822.

    Article  PubMed  CAS  Google Scholar 

  115. Burtis, C. A., & Ashwood, E. R. (1998). Tietz fundamentals of clinical chemistry. Philadelphia: WB Saunders.

    Google Scholar 

  116. Bittner, K., & Müller, W. (1999). Oxidative downmodulation of the transient K-current IA by intracellular arachidonic acid in rat hippocampal neurons. Journal of Neurophysiology, 82, 508–511.

    PubMed  CAS  Google Scholar 

  117. Xiao, Y. F., Ke, Q., Wang, S. Y., Auktor, K., Yang, Y., Wang, G. K., et al. (2001). Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proceedings of the National Academy of Sciences of the United States of America, 98, 3606–3611.

    Article  PubMed  CAS  Google Scholar 

  118. Freites, J. A., Tobias, D. J., von Heijne, G., & White, S. H. (2005). Interface connections of a transmembrane voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 102, 15059–15064.

    Article  PubMed  CAS  Google Scholar 

  119. Sansom, M. S., Bond, P. J., Deol, S. S., Grottesi, A., Haider, S., & Sands, Z. A. (2005). Molecular simulations and lipid–protein interactions: Potassium channels and other membrane proteins. Biochemical Society Transactions, 33, 916–920.

    Article  PubMed  CAS  Google Scholar 

  120. Sun, X., Yao, H., Zhou, D., Gu, X., & Haddad, G. G. (2008). Modulation of hSlo BK current inactivation by fatty acid esters of CoA. Journal of Neurochemistry, 104, 1394–1403.

    Article  PubMed  CAS  Google Scholar 

  121. Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5, 827–835.

    Article  PubMed  CAS  Google Scholar 

  122. Bhattacharya, A. A., Grune, T., & Curry, S. (2000). Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology, 303, 721–732.

    Article  PubMed  CAS  Google Scholar 

  123. Simard, J. R., Zunszain, P. A., Ha, C. E., Yang, J. S., Bhagavan, N. V., Petitpas, I., et al. (2005). Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 102, 17958–17963.

    Article  PubMed  CAS  Google Scholar 

  124. Hamilton, J. A. (2004). Fatty acid interactions with proteins: What X-ray crystal and NMR solution structures tell us. Progress in Lipid Research, 43, 177–199.

    Article  PubMed  CAS  Google Scholar 

  125. Sacchettini, J. C., & Gordon, J. I. (1993). Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. The Journal of Biological Chemistry, 268, 18399–18402.

    PubMed  CAS  Google Scholar 

  126. Banaszak, L., Winter, N., Xu, Z., Bernlohr, D. A., Cowan, S., & Jones, T. A. (1994). Lipid-binding proteins: A family of fatty acid and retinoid transport proteins. Advances in Protein Chemistry, 45, 89–151.

    Article  PubMed  CAS  Google Scholar 

  127. Jones, T. A., Bergfors, T., Sedzik, J., & Unge, T. (1988). The three-dimensional structure of P2 myelin protein. The EMBO Journal, 7, 1597–1604.

    PubMed  CAS  Google Scholar 

  128. Thompson, J., Winter, N., Terwey, D., Bratt, J., & Banaszak, L. (1997). The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. The Journal of Biological Chemistry, 272, 7140–7150.

    Article  PubMed  CAS  Google Scholar 

  129. Thompson, J., Ory, J., Reese-Wagoner, A., & Banaszak, L. (1999). The liver fatty acid binding protein—comparison of cavity properties of intracellular lipid-binding proteins. Molecular and Cellular Biochemistry, 192, 9–16.

    Article  PubMed  CAS  Google Scholar 

  130. Lotshaw, D. P. (2007). Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochemistry and Biophysics, 47, 209–256.

    Article  PubMed  CAS  Google Scholar 

  131. Eldho, N. V., Feller, S. E., Tristram-Nagle, S., Polozov, I. V., & Gawrisch, K. (2003). Polyunsaturated docosahexaenoic vs docosapentaenoic acid-differences in lipid matrix properties from the loss of one double bond. Journal of the American Chemical Society, 125, 6409–6421.

    Article  PubMed  CAS  Google Scholar 

  132. Gawrisch, K., Eldho, N. V., & Holte, L. L. (2003). The structure of DHA in phospholipid membranes. Lipids, 38, 445–452.

    Article  PubMed  CAS  Google Scholar 

  133. Grossfield, A., Feller, S. E., & Pitman, M. C. (2006). A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proceedings of the National Academy of Sciences of the United States of America, 103, 4888–4893.

    Article  PubMed  CAS  Google Scholar 

  134. Hamano, H., Nabekura, J., Nishikawa, M., & Ogawa, T. (1996). Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. Journal of Neurophysiology, 75, 1264–1270.

    PubMed  CAS  Google Scholar 

  135. Nishikawa, M., Kimura, S., & Akaike, N. (1994). Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. The Journal of Physiology, 475, 83–93.

    PubMed  CAS  Google Scholar 

  136. Miller, B., Sarantis, M., Traynelis, S. F., & Attwell, D. (1992). Potentiation of NMDA receptor currents by arachidonic acid. Nature, 355, 722–725.

    Article  PubMed  CAS  Google Scholar 

  137. Wilding, T. J., Chai, Y. H., & Huettner, J. E. (1998). Inhibition of rat neuronal kainate receptors by cis-unsaturated fatty acids. The Journal of Physiology, 513(Pt 2), 331–339.

    Article  PubMed  CAS  Google Scholar 

  138. Wilding, T. J., Fulling, E., Zhou, Y., & Huettner, J. E. (2008). Amino acid substitutions in the pore helix of GluR6 control inhibition by membrane fatty acids. The Journal of General Physiology, 132, 85–99.

    Article  PubMed  CAS  Google Scholar 

  139. Wilding, T. J., Zhou, Y., & Huettner, J. E. (2005). Q/R site editing controls kainate receptor inhibition by membrane fatty acids. The Journal of Neuroscience, 25, 9470–9478.

    Article  PubMed  CAS  Google Scholar 

  140. Wang, G. K. (1990). Binding affinity and stereoselectivity of local anesthetics in single batrachotoxin-activated Na+ channels. The Journal of General Physiology, 96, 1105–1127.

    Article  PubMed  CAS  Google Scholar 

  141. Nilsson, J., Madeja, M., & Arhem, P. (2003). Local anesthetic block of Kv channels: Role of the S6 helix and the S5–S6 linker for bupivacaine action. Molecular Pharmacology, 63, 1417–1429.

    Article  PubMed  CAS  Google Scholar 

  142. Snyders, D. J., & Yeola, S. W. (1995). Determinants of antiarrhythmic drug action electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circulation Research, 77, 575–583.

    PubMed  CAS  Google Scholar 

  143. Martinac, B. (2007). 3.5 billion years of mechanosensory transduction: Structure and function of mechanosensitive channels in prokaryotes. In O. P. Hamill (Ed.), Current topics in membranes (Vol. 58, pp. 25–57). London: Academic Press.

    Google Scholar 

  144. Steinbacher, S., Bass, R., Strop, P., & Rees, D. C. (2007). Structures of the prokaryotic mechanosensitive channels MscL and MscS. In O. P. Hamill (Ed.), Current topics in membranes (Vol. 58, pp. 1–24). London: Academic Press.

    Google Scholar 

  145. Sukharev, S., Akitake, B., & Anishkin, A. (2007). The bacterial mechanosensitive channel MscS: Emerging principles of gating and modulation. In O. P. Hamill (Ed.), Current topics in membranes (Vol. 58, pp. 235–267). London: Academic Press.

    Google Scholar 

  146. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., & Rees, D. C. (1998). Structure of the MscL homolog from mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science, 282, 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  147. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A., & Martinac, B. (2002). Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature, 418, 942–948.

    Article  PubMed  CAS  Google Scholar 

  148. Cantor, R. S. (1999). Lipid composition and the lateral pressure profile in bilayers. Biophysical Journal, 76, 2625–2639.

    PubMed  CAS  Google Scholar 

  149. Marsh, D. (2007). Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophysical Journal, 93, 3884–3899.

    Article  PubMed  CAS  Google Scholar 

  150. Elmore, D. E., & Dougherty, D. A. (2003). Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophysical Journal, 85, 1512–1524.

    PubMed  CAS  Google Scholar 

  151. Lundbaek, J. A., & Andersen, O. S. (1994). Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. The Journal of General Physiology, 104, 645–673.

    Article  PubMed  CAS  Google Scholar 

  152. Bruno, M. J., Koeppe, R. E. II., & Andersen, O. S. (2007). Docosahexaenoic acid alters bilayer elastic properties. Proceedings of the National Academy of Sciences of the United States of America, 104, 9638–9643.

    Article  PubMed  CAS  Google Scholar 

  153. McMahon, H. T., & Gallop, J. L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature, 438, 590–596.

    Article  PubMed  CAS  Google Scholar 

  154. Jensen, M. O., & Mouritsen, O. G. (2004). Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochimica et Biophysica Acta, 1666, 205–226.

    Article  PubMed  CAS  Google Scholar 

  155. Hamill, O. P., & Martinac, B. (2001). Molecular basis of mechanotransduction in living cells. Physiological Reviews, 81, 685–740.

    PubMed  CAS  Google Scholar 

  156. Leabu, M. (2006). Membrane fusion in cells: Molecular machinery and mechanisms. Journal of Cellular and Molecular Medicine, 10, 423–427.

    Article  PubMed  CAS  Google Scholar 

  157. Perozo, E., Kloda, A., Cortes, D. M., & Martinac, B. (2002). Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Structural Biology, 9, 696–703.

    Article  PubMed  CAS  Google Scholar 

  158. Martinac, B. (2004). Mechanosensitive ion channels: Molecules of mechanotransduction. Journal of Cell Science, 117, 2449–2460.

    Article  PubMed  CAS  Google Scholar 

  159. Fink, M., Lesage, F., Duprat, F., Heurteaux, C., Reyes, R., Fosset, M., et al. (1998). A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. The EMBO Journal, 17, 3297–3308.

    Article  PubMed  CAS  Google Scholar 

  160. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M., & Honore, E. (2000). Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK–1 and TRAAK. The Journal of Biological Chemistry, 275, 10128–10133.

    Article  PubMed  CAS  Google Scholar 

  161. Dan, N. (2007). Lipid tail chain asymmetry and the strength of membrane-induced interactions between membrane proteins. Biochimica et Biophysica Acta, 1768, 2393–2399.

    Article  PubMed  CAS  Google Scholar 

  162. Andersen, O. S., & Koeppe, R. E., I. I. (2007). Bilayer thickness and membrane protein function: An energetic perspective. Annual Review of Biophysics and Biomolecular Structure, 36, 107–130.

    Article  PubMed  CAS  Google Scholar 

  163. Lesage, F., Terrenoire, C., Romey, G., & Lazdunski, M. (2000). Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. The Journal of Biological Chemistry, 275, 28398–28405.

    Article  PubMed  CAS  Google Scholar 

  164. Chemin, J., Patel, A., Duprat, F., Zanzouri, M., Lazdunski, M., & Honore, E. (2005). Lysophosphatidic acid-operated K+ channels. The Journal of Biological Chemistry, 280, 4415–4421.

    Article  PubMed  CAS  Google Scholar 

  165. Morris, C. E., Juranka, P. F., Lin, W., Morris, T. J., & Laitko, U. (2006). Studying the mechanosensitivity of voltage-gated channels using oocyte patches. Methods in Molecular Biology, 322, 315–329.

    Article  PubMed  CAS  Google Scholar 

  166. Gu, C. X., Juranka, P. F., & Morris, C. E. (2001). Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophysical Journal, 80, 2678–2693.

    PubMed  CAS  Google Scholar 

  167. Tabarean, I. V., & Morris, C. E. (2002). Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3–S4 linker deletions. Biophysical Journal, 82, 2982–2994.

    PubMed  CAS  Google Scholar 

  168. Laitko, U., Juranka, P. F., & Morris, C. E. (2006). Membrane stretch slows the concerted step prior to opening in a Kv channel. The Journal of General Physiology, 127, 687–701.

    Article  PubMed  CAS  Google Scholar 

  169. Laitko, U., & Morris, C. E. (2004). Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a shaker channel. The Journal of General Physiology, 123, 135–154.

    Article  PubMed  Google Scholar 

  170. Lin, W., Laitko, U., Juranka, P. F., & Morris, C. E. (2007). Dual stretch responses of mHCN2 pacemaker channels: Accelerated activation, accelerated deactivation. Biophysical Journal, 92, 1559–1572.

    Article  PubMed  CAS  Google Scholar 

  171. Morris, C. E., & Juranka, P. F. (2007). Nav channel mechanosensitivity: Activation and inactivation accelerate reversibly with stretch. Biophysical Journal, 93, 822–833.

    Article  PubMed  CAS  Google Scholar 

  172. Langton, P. D. (1993). Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. The Journal of Physiology, 471, 1–11.

    PubMed  CAS  Google Scholar 

  173. Liu, X. H., Zhang, W., & Fisher, T. E. (2005). A novel osmosensitive voltage gated cation current in rat supraoptic neurones. The Journal of Physiology, 568, 61–68.

    Article  PubMed  CAS  Google Scholar 

  174. Barbuti, A., Gravante, B., Riolfo, M., Milanesi, R., Terragni, B., & DiFrancesco, D. (2004). Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circulation Research, 94, 1325–1331.

    Article  PubMed  CAS  Google Scholar 

  175. Tabarean, I. V., Juranka, P., & Morris, C. E. (1999). Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophysical Journal, 77, 758–774.

    PubMed  CAS  Google Scholar 

  176. Shcherbatko, A., Ono, F., Mandel, G., & Brehm, P. (1999). Voltage-dependent sodium channel function is regulated through membrane mechanics. Biophysical Journal, 77, 1945–1959.

    Article  PubMed  CAS  Google Scholar 

  177. Doan, T. N., Stephans, K., Ramirez, A. N., Glazebrook, P. A., Andresen, M. C., & Kunze, D. L. (2004). Differential distribution and function of hyperpolarization-activated channels in sensory neurons and mechanosensitive fibers. The Journal of Neuroscience, 24, 3335–3343.

    Article  PubMed  CAS  Google Scholar 

  178. Ghamari-Langroudi, M., & Bourque, C. W. (2002). Flufenamic acid blocks depolarizing afterpotentials and phasic firing in rat supraoptic neurones. The Journal of Physiology, 545, 537–542.

    Article  PubMed  CAS  Google Scholar 

  179. Kamp, F., & Hamilton, J. A. (1992). pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 89, 11367–11370.

    Article  PubMed  CAS  Google Scholar 

  180. Pohl, E. E., Voltchenko, A. M., & Rupprecht, A. (2008). Flip-flop of hydroxy fatty acids across the membrane as monitored by proton-sensitive microelectrodes. Biochimica et Biophysica Acta, 1778, 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  181. Padanilam, B. J., Lu, T., Hoshi, T., Padanilam, B. A., Shibata, E. F., & Lee, H. C. (2002). Molecular determinants of intracellular pH modulation of human Kv1.4 N-type inactivation. Molecular Pharmacology, 62, 127–134.

    Article  PubMed  CAS  Google Scholar 

  182. Piomelli, D. (2005). The challenge of brain lipidomics. Prostaglandins & Other Lipid Mediators, 77, 23–34.

    Article  CAS  Google Scholar 

  183. Bisogno, T., Howell, F., Williams, G., Minassi, A., Cascio, M. G., Ligresti, A., et al. (2003). Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. The Journal of Cell Biology, 163, 463–468.

    Article  PubMed  CAS  Google Scholar 

  184. Boland, L. M., Jiang, M., Lee, S. Y., Fahrenkrug, S. C., Harnett, M. T., & O’Grady, S. M. (2003). Functional properties of a brain-specific NH2-terminally spliced modulator of Kv4 channels. American Journal of Physiology. Cell Physiology, 285, C161–C170.

    PubMed  CAS  Google Scholar 

  185. Traub, R. D., Wong, R. K., Miles, R., & Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66, 635–650.

    PubMed  CAS  Google Scholar 

  186. Chesnoy-Marchais, D., & Fritsch, J. (1994). Concentration-dependent modulations of potassium and calcium currents of rat osteoblastic cells by arachidonic acid. The Journal of Membrane Biology, 138, 159–170.

    Article  PubMed  CAS  Google Scholar 

  187. Zhang, Y., Cribbs, L. L., & Satin, J. (2000). Arachidonic acid modulation of α1H, a cloned human T-type calcium channel. American Journal of Physiology. Heart and Circulatory Physiology, 278, H184–H193.

    PubMed  CAS  Google Scholar 

  188. Seebungkert, B., & Lynch, J. W. (2002). Effects of polyunsaturated fatty acids on voltage-gated K+ and Na+ channels in rat olfactory receptor neurons. The European Journal of Neuroscience, 16, 2085–2094.

    Article  PubMed  Google Scholar 

  189. Takahira, M., Sakurada, N., Segawa, Y., & Shirao, Y. (2001). Two types of K+ currents modulated by arachidonic acid in bovine corneal epithelial cells. Investigative Ophthalmology and Visual Science, 42, 1847–1854.

    PubMed  CAS  Google Scholar 

  190. Sokolowski, B. H., Sakai, Y., Harvey, M. C., & Duzhyy, D. E. (2004). Identification and localization of an arachidonic acid-sensitive potassium channel in the cochlea. The Journal of Neuroscience, 24, 6265–6276.

    Article  PubMed  CAS  Google Scholar 

  191. Poling, J. S., Vicini, S., Rogawski, M. A., & Salem, N., Jr. (1996). Docosahexaenoic acid block of neuronal voltage-gated K+ channels: Subunit selective antagonism by zinc. Neuropharmacology, 35, 969–982.

    Article  PubMed  CAS  Google Scholar 

  192. Jacobson, D. A., Weber, C. R., Bao, S., Turk, J., & Philipson, L. H. (2007). Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. The Journal of Biological Chemistry, 282, 7442–7449.

    Article  PubMed  CAS  Google Scholar 

  193. Gubitosi-Klug, R. A., Yu, S. P., Choi, D. W., & Gross, R. W. (1995). Concomitant acceleration of the activation and inactivation kinetics of the human delayed rectifier K+ channel (Kv1.1) by Ca2+-independent phospholipase A2. The Journal of Biological Chemistry, 270, 2885–2888.

    Article  PubMed  CAS  Google Scholar 

  194. Guizy, M., David, M., Arias, C., Zhang, L., Cofan, M., Ruiz-Gutierrez, V., et al. (2008). Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, alpha-linolenic acid. Journal of Molecular and Cellular Cardiology, 44, 323–335.

    PubMed  CAS  Google Scholar 

  195. McKay, M. C., & Worley, J. F., III. (2001). Linoleic acid both enhances activation and blocks Kv1.5 and Kv2.1 channels by two separate mechanisms. American Journal of Physiology. Cell Physiology, 281, C1277–C1284.

    PubMed  CAS  Google Scholar 

  196. Singleton, C. B., Valenzuela, S. M., Walker, B. D., Tie, H., Wyse, K. R., Bursill, J. A., et al. (1999). Blockade by N-3 polyunsaturated fatty acid of the Kv4.3 current stably expressed in Chinese hamster ovary cells. British Journal of Pharmacology, 127, 941–948.

    Article  PubMed  CAS  Google Scholar 

  197. Clarke, A. L., Petrou, S., Walsh, J. V., Jr, & Singer, J. J. (2003). Site of action of fatty acids and other charged lipids on BKCa channels from arterial smooth muscle cells. American Journal of Physiology. Cell Physiology, 284, C607–C619.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Thomas and Kate Jeffress Foundation and the Arts and Sciences Dean’s Office for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda M. Boland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boland, L.M., Drzewiecki, M.M. Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels. Cell Biochem Biophys 52, 59–84 (2008). https://doi.org/10.1007/s12013-008-9027-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9027-2

Keywords

Navigation