Skip to main content
Log in

Conditional Nuclear Import and Export of Yeast Proteins Using a Chemical Inducer of Dimerization

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In eukaryotes, reversible shuttling between the nucleus and cytoplasm is an important regulatory mechanism, particularly for many kinases and transcription factors. Inspired by the natural system, we recently developed a technology to control protein position in budding yeast using a chemical inducer of dimerization (CID). In this method, a nuclear export or localization signal is reversibly appended to a protein of interest by the CID, which effectively places its subcellular location under direct control of the chemical stimulus. Here, we explicitly tested the ability of this system to direct the nucleocytoplasmic transport of a panel of 16 representative kinases and transcription factors. From this set, we found that 12 targets (75%) are susceptible to re-positioning, suggesting that this method might be applicable to a range of targets. Interestingly, the four proteins that resisted mislocalization (Fun20p, Hcm1p, Pho4p, and Ste12p) are known to engage in a large number of protein–protein contacts. We suspect that, for these highly connected targets, the strength of the chemical signal may be insufficient to drive mislocalization and that proteins with relatively few partners might be most amenable to this approach. Collectively, these studies provide a necessary framework for the design of large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nigg, E. A. (1997). Nucleocytoplasmic transport: Signals, mechanisms and regulation. Nature, 386, 779–787.

    Article  PubMed  CAS  Google Scholar 

  2. Weis, K. (2003). Regulating access to the genome: Nucleocytoplasmic transport throughout the cell cycle. Cell, 112, 441–451.

    Article  PubMed  CAS  Google Scholar 

  3. Crabtree, G. R., & Olson, E. N. (2002). NFAT signaling: Choreographing the social lives of cells. Cell, 109(Suppl), S67–S79.

    Article  PubMed  CAS  Google Scholar 

  4. Geda, P., Patury, S., Ma, J., Bharucha, N., Dobry, C. J., Lawson, S. K., et al. (2008). A small molecule-directed approach to control protein localization and function. Yeast, 25, 577–594.

    Article  PubMed  CAS  Google Scholar 

  5. Klemm, J. D., Beals, C. R., & Crabtree, G. R. (1997). Rapid targeting of nuclear proteins to the cytoplasm. Current Biology, 7, 638–644.

    Article  PubMed  CAS  Google Scholar 

  6. Bayle, J. H., Grimley, J. S., Stankunas, K., Gestwicki, J. E., Wandless, T. J., & Crabtree, G. R. (2006). Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chemistry & Biology, 13, 99–107.

    Article  CAS  Google Scholar 

  7. Briesewitz, R., Ray, G. T., Wandless, T. J., & Crabtree, G. R. (1999). Affinity modulation of small-molecule ligands by borrowing endogenous protein surfaces. Proceedings of the National Academy of Sciences of the United States of America, 96, 1953–1958.

    Article  PubMed  CAS  Google Scholar 

  8. Crabtree, G. R., & Schreiber, S. L. (1996). Three-part inventions: Intracellular signaling and induced proximity. Trends in Biochemical Sciences, 21, 418–422.

    Article  PubMed  CAS  Google Scholar 

  9. Gestwicki, J. E., & Marinec, P. S. (2007). Chemical control over protein–protein interactions: Beyond inhibitors. Combinatorial Chemistry & High Throughput Screening, 10, 667–675.

    Article  CAS  Google Scholar 

  10. Banaszynski, L. A., & Wandless, T. J. (2006). Conditional control of protein function. Chemistry & Biology, 13, 11–21.

    Article  CAS  Google Scholar 

  11. Harding, M. W., Galat, A., Uehling, D. E., & Schreiber, S. L. (1989). A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature, 341, 758–760.

    Article  PubMed  CAS  Google Scholar 

  12. Siekierka, J. J., Hung, S. H., Poe, M., Lin, C. S., & Sigal, N. H. (1989). A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature, 341, 755–757.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, E. J., Albers, M. W., Shin, T. B., Ichikawa, K., Keith, C. T., Lane, W. S., et al. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature, 369, 756–758.

    Article  PubMed  CAS  Google Scholar 

  14. Banaszynski, L. A., Liu, C. W., & Wandless, T. J. (2005). Characterization of the FKBP.rapamycin.FRB ternary complex. Journal of the American Chemical Society, 127, 4715–4721.

    Article  PubMed  CAS  Google Scholar 

  15. Walhout, A. J., Sordella, R., Lu, X., Hartley, J. L., Temple, G. F., Brasch, M. A., et al. (2000). Protein interaction mapping in C. elegans using proteins involved in vulval development. Science, 287, 116–122.

    Article  PubMed  CAS  Google Scholar 

  16. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology, 20, 87–90.

    Article  PubMed  CAS  Google Scholar 

  17. Goldstein, A. L., & McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast, 15, 1541–1553.

    Article  PubMed  CAS  Google Scholar 

  18. Graumann, J., Dunipace, L. A., Seol, J. H., McDonald, W. H., Yates, J. R., I. I. I., Wold, B. J., et al. (2004). Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Molecular & Cell Proteomics, 3, 226–237.

    Article  CAS  Google Scholar 

  19. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141–147.

    Article  PubMed  CAS  Google Scholar 

  20. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415, 180–183.

    Article  PubMed  CAS  Google Scholar 

  21. Fields, S. (2005). High-throughput two-hybrid analysis. The promise and the peril. FEBS Journal, 272, 5391–5399.

    Article  PubMed  CAS  Google Scholar 

  22. Bharucha, N., Ma, J., Dobry, C. J., Lawson, S. K., Yang, Z., & Kumar, A. (2008). Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth. Molecular Biology of the Cell, 19, 2708–2717.

    Article  PubMed  CAS  Google Scholar 

  23. Wiwatwattana, N., Landau, C. M., Cope, G. J., Harp, G. A., & Kumar, A. (2007). Organelle DB: An updated resource of eukaryotic protein localization and function. Nucleic Acids Research, 35, D810–D814.

    Article  PubMed  CAS  Google Scholar 

  24. Butty, A. C., Pryciak, P. M., Huang, L. S., Herskowitz, I., & Peter, M. (1998). The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science, 282, 1511–1516.

    Article  PubMed  CAS  Google Scholar 

  25. Fields, S., & Song, O. (1989). A novel genetic system to detect protein–protein interactions. Nature, 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  26. Grigoriev, A. (2003). On the number of protein–protein interactions in the yeast proteome. Nucleic Acids Research, 31, 4157–4161.

    Article  PubMed  CAS  Google Scholar 

  27. Kohler, J. J., & Bertozzi, C. R. (2003). Regulating cell surface glycosylation by small molecule control of enzyme localization. Chemistry & Biology, 10, 1303–1311.

    Article  CAS  Google Scholar 

  28. Graef, I. A., Holsinger, L. J., Diver, S., Schreiber, S. L., & Crabtree, G. R. (1997). Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70. EMBO Journal, 16, 5618–5628.

    Article  PubMed  CAS  Google Scholar 

  29. Haruki, H., Nishikawa, J., & Laemmli, U. K. (2008). The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes. Molecular Cell, 31, 925–932.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank C. Trevor, R. Lahey, and T. Cory for helpful comments and eager assistance. This work was supported by grants RSG-06-179-01-MBC from the American Cancer Society, DBI 0543017 from the National Science Foundation, and Basil O’Connor Award 5-FY05-1224 from the March of Dimes (to A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Gestwicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patury, S., Geda, P., Dobry, C.J. et al. Conditional Nuclear Import and Export of Yeast Proteins Using a Chemical Inducer of Dimerization. Cell Biochem Biophys 53, 127–134 (2009). https://doi.org/10.1007/s12013-009-9044-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9044-9

Keywords

Navigation