Skip to main content
Log in

The Prooxidant Action of Dietary Antioxidants Leading to Cellular DNA Breakage and Anticancer Effects: Implications for Chemotherapeutic Action Against Cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adlercreutz, H., Goldin, B. R., Gorbach, S. L., Hockerstedt, K., et al. (1995). Soybean phytoestrogens intake and cancer risk. Journal of Nutrition, 125, 757S–770S.

    PubMed  CAS  Google Scholar 

  2. Park, O. J., & Sur, Y. J. (2004). Chemopreventive potential of epigallocatechin gallate and genistein: Evidence from epidemiological and laboratory studies. Toxicology Letters, 150, 43–56.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes, S., Peterson, G., Grubbs, C., & Setchell, K. (1994). Potential role of dietary isoflavones in the prevention of cancer. Advances in Experimental Medicine and Biology, 354, 135–147.

    Article  PubMed  CAS  Google Scholar 

  4. Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3, 768–780.

    Article  PubMed  CAS  Google Scholar 

  5. Schumacker, P. T. (2006). Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell, 10, 175–176.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, Q., Espey, M. G., Sun, A. Y., Pooput, C., Kirk, K. L., Krishna, M. C., et al. (2008). Pharmacologic doses of ascorbate act as a prooxidant and decrease growth aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 11105–11109.

    Article  PubMed  CAS  Google Scholar 

  7. Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y., & Yabu, Y. (1994). Antioxidant, gallic acid, induces apoptosis in HL60RG cells. Biochemical and Biophysical Research Communications, 204, 898–904.

    Article  PubMed  CAS  Google Scholar 

  8. Ahmad, N., Feyes, D. K., Nieminen, A. L., Agarwal, R., & Mukhtar, H. (1997). Green tea constituent epigallocatechin-3-gallate, and induction of cell cycle arrest in human carcinoma cells. Journal of the National Cancer Institute, 89, 1881–1886.

    Article  PubMed  CAS  Google Scholar 

  9. Clement, M. V., Hirpara, J. L., Chawdhury, S. H., & Pervaiz, S. (1998). Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signalling-dependent apoptosis in human tumor cells. Blood, 92, 996–1002.

    PubMed  CAS  Google Scholar 

  10. Kuo, M. L., Huang, T. S., & Lin, J. K. (1996). Curcumin, an antioxidant and antitumor promoter, induces apoptosis in human leukemia cells. Biochimica et Biophysica Acta, 1317, 95–100.

    Article  PubMed  CAS  Google Scholar 

  11. Chang, K. L., Cheng, H. L., Huang, L. W., Hseih, B. S., et al. (2008). Combined effects of terazosin and genistein on a metastatic, hormone-independent human prostate cancer cell line. Cancer Letters, 276, 14–20.

    Article  PubMed  Google Scholar 

  12. Gupta, S., Hastak, K., Ahmad, N., Lewin, J. S., & Mukhtar, H. (2001). Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proceedings of the National Academy of Sciences of the United States of America, 98, 10350–10355.

    Article  PubMed  CAS  Google Scholar 

  13. Orsolic, N., Terzic, S., Sver, L., & Basic, I. (2005). Honey-bee products in the prevention and therapy of murine transplantable tumors. Journal of the Science of Food and Agriculture, 85, 363–370.

    Article  CAS  Google Scholar 

  14. Wang, Y., Eltoum, I. E., & Lamatiniere, C. A. (2007). Genistein chemoprevention of prostate cancer in TRAMP mice. Journal of Carcinogenesis, 6, 3–9.

    Article  PubMed  Google Scholar 

  15. Chen, Q., Espey, M. G., Krishna, M. C., Mitchell, J. B., Corpe, C. P., Buettner, G. R., et al. (2005). Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proceedings of the National Academy of Sciences of the United States of America, 102, 13604–13609.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, Z. P., Schell, J. B., Ho, C. T., & Chen, K. Y. (1998). Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Letters, 129, 173–179.

    Article  PubMed  CAS  Google Scholar 

  17. Lu, J., Ho, C. T., Ghai, G., & Chen, K. Y. (2000). Differential effects of theaflavin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells. Cancer Research, 60, 6465–6471.

    PubMed  CAS  Google Scholar 

  18. Ahmad, M. S., Fazal, F., Rahman, A., Hadi, S. M., & Parish, J. H. (1992). Activities of flavonoids for the cleavage of DNA in the presence of Cu(II): Correlation with the generation of active oxygen species. Carcinogenesis, 13, 605–608.

    Article  CAS  Google Scholar 

  19. Gali, H. U., Perchellet, E. M., Klish, D. S., Johnson, J. M., & Perchellet, J. P. (1992). Hydrolyzable tannins; potent inhibitors of hydroperoxide production and tumor promotion in the mouse skin treated with 12-O-tetradecanoyl phorbol-13-acetate in vivo. International Journal of Cancer, 51, 425–432.

    Article  CAS  Google Scholar 

  20. Hadi, S. M., Asad, S. F., Singh, S., & Ahmad, A. (2000). A putative mechanism for anticancer and apoptosis inducing properties of plant-derived polyphenolic compounds. IUBMB Life, 50, 1–5.

    Article  Google Scholar 

  21. Hadi, S. M., Bhat, S. H., Azmi, A. S., Hanif, S., et al. (2007). Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties. Seminars in Cancer Biology, 17, 370–376.

    Article  PubMed  CAS  Google Scholar 

  22. Bhat, S. H., Azmi, A. S., Hanif, S., & Hadi, S. M. (2006). Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. IJBCB, 38, 2074–2081.

    CAS  Google Scholar 

  23. Kagawa, T. F., Geierstanger, B. H., Wang, A. H. J., & Ho, P. S. (1991). Covalent modification of guanine bases in double stranded DNA: The 1:2-AZ-DNA structure of dc (CACACG) in the presence of CuCl2. Journal of Biological Chemistry, 226, 20175–20184.

    Google Scholar 

  24. Ebadi, M., & Swanson, S. (1998). The status of zinc, copper and metallothionien in cancer patients. Progress in Clinical and Biological Research, 259, 61–67.

    Google Scholar 

  25. Margalioth, E. J., Udassin, R., Cohen, C., & Maor, J. (1987). Serum copper level in gynaecologic malignancies. American Journal of Obstetrics, 157, 93–96.

    Article  CAS  Google Scholar 

  26. Yoshida, D., Ikeda, Y., & Nakazawa, S. (1993). Quantitative analysis of copper, zinc and copper/zinc ratio in selective human brain tumors. Journal of Neuro-oncology, 16, 109–115.

    Article  PubMed  CAS  Google Scholar 

  27. Ebara, M., Fukuda, H., Hanato, R., Saisho, H., et al. (2000). Relationship between zinc, copper and metallothionein in hepatocellular carcinoma and its surrounding liver parenchyma. Journal of Hepatology, 33, 415–422.

    Article  PubMed  CAS  Google Scholar 

  28. Zheng, L. F., Wei, Q. Y., Cai, Y. J., Fang, J. G., et al. (2006). DNA damage induced by resveratrol and its synthetic analogs in the presence of Cu(II) ions: Mechanism and structure-activity relationship. Free Radical Biology and Medicine, 41, 1807–1816.

    Article  PubMed  CAS  Google Scholar 

  29. Pool-Zoble, B. L., Guigas, C., Klein, R. G., Neudecker, C. H., Renner, H. W., & Schmezer, P. (1993). Assesment of genotoxic effects of lindane. Food and Chemical Toxicology, 31, 271–283.

    Article  Google Scholar 

  30. Szeto, Y. T., Collins, A. R., & Benzie, I. F. F. (2002). Effects of dietary antioxidants on DNA damage in lysed cells using a modified comet assay procedure. Mutation Research, 500, 31–38.

    Article  PubMed  CAS  Google Scholar 

  31. Kasamatsu, T., Kohda, K., & Kawazoe, Y. (1996). Comparison of chemically induced DNA breakage in cellular and subcellular systems using the comet assay. Mutation Research, 369, 1–6.

    Article  PubMed  CAS  Google Scholar 

  32. Azmi, A. S., Bhat, S. H., & Hadi, S. M. (2005). Resveratrol-Cu(II) induced DNA breakage in human peripheral lymphocytes: Implications for anticancer properties. FEBS Letters, 579, 3131–3135.

    Article  PubMed  CAS  Google Scholar 

  33. Ramanathan, R., Das, N. P., & Tan, C. H. (1994). Effect of γ-linolenic acid, flavonoids and vitamins on cytotoxicity and lipid peroxidation. Free Radical Biology and Medicine, 16, 43–48.

    Article  PubMed  CAS  Google Scholar 

  34. Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., et al. (2000). Single cell gel electrophoresis/comet assay: Guidelines for invitro and invivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35, 206–221.

    Article  PubMed  CAS  Google Scholar 

  35. Quinlan, G. J., & Gutteridge, M. C. (1987). Oxygen radical damage to DNA by Rifamycin SV and copper ions. Biochemical Pharmacology, 36, 3629–3633.

    Article  PubMed  CAS  Google Scholar 

  36. Rahman, A., Shahabuddin, S., Hadi, S. M., Parish, J. H., & Ainley, K. (1989). Strand scissions in DNA induced by quercetin and Cu(II): Role of Cu(I) and oxygen free radicals in the reaction. Carcinogenesis, 10, 1833–1839.

    Article  PubMed  CAS  Google Scholar 

  37. Ullah, M. F., Shamim, U., Hanif, S., Azmi, A. S., & Hadi, S. M. (2009). Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A. Molecular Nutrition & Food Research, 53, 1376–1385.

    Article  CAS  Google Scholar 

  38. Badwey, A., & Karnovsky, M. L. (1980). Active oxygen species and the functions of phagocytic leukocytes. Annual Review of Biochemistry, 49, 695–726.

    Article  PubMed  CAS  Google Scholar 

  39. Czene, S., Tiback, M., & Harms-Ringdahl, M. (1997). pH-dependent DNA cleavage in permeabilized human fibroblasts. Biochemical Journal, 323, 337–341.

    PubMed  CAS  Google Scholar 

  40. Oberly, T. D., & Oberly, L. W. (1997). Antioxidant enzyme levels in cancer. Histology and Histopathology, 12, 525–535.

    Google Scholar 

  41. Kong, Q., Beel, J. A., & Lilleihei, K. O. (2000). A threshold concept for cancer therapy. Medical Hypotheses, 55, 29–35.

    Article  PubMed  CAS  Google Scholar 

  42. Ahmad, N., Feyes, D. K., Nieminen, A. L., Agarwal, R., & Mukhtar, H. (1997). Green tea constituent epigallocatechin-3-gallate, and induction of cell cycle arrest in human carcinoma cells. Journal of the National Cancer Institute, 89, 1881–1886.

    Article  PubMed  CAS  Google Scholar 

  43. Chevion, M. (1988). Site-specific mechanism for free radical induced biological damage. The essential role of redox-active transition metals. Free Radical Biology and Medicine, 5, 27–37.

    Article  PubMed  CAS  Google Scholar 

  44. Zimmer, C., Luck, G., Fritzsche, H., & Triebel, H. (1971). DNA-copper (II) complex and the DNA conformation. Biopolymers, 10, 441–463.

    Article  PubMed  CAS  Google Scholar 

  45. Gupte, A., & Mumper, R. J. (2008). Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treatment Reviews, 35, 32–46.

    Article  PubMed  Google Scholar 

  46. Devi, G. S., Prasad, M. H., Saraswathi, I., Rao, D. N., & Reddy, P. P. (2000). Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemia. Clinica Chimica Acta, 293, 53–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial assistance provided by the University Grants Commission, New Delhi, under the DRS-II program and Junior Research Fellowship to HYK from CSIR, New Delhi.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, M.F., Ahmad, A., Khan, H.Y. et al. The Prooxidant Action of Dietary Antioxidants Leading to Cellular DNA Breakage and Anticancer Effects: Implications for Chemotherapeutic Action Against Cancer. Cell Biochem Biophys 67, 431–438 (2013). https://doi.org/10.1007/s12013-011-9303-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9303-4

Keywords

Navigation