Skip to main content
Log in

Cysteine to Serine Conversion at 111th Position Renders the Disaggregation and Retains the Stabilization of Detrimental SOD1 A4V Mutant Against Amyotrophic Lateral Sclerosis in Human—A Discrete Molecular Dynamics Study

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Protein aggregation is a hallmark of various neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) in humans. Mutations in Cu/Zn superoxide dismutase (SOD1) protein were found to be a prominent cause behind the majority of the familial ALS cases with abnormal protein aggregates. Herein, we report the biophysical characterization of the beneficial mutation C111S that stabilizes the SOD1 harboring A4V mutation, one of the most lethal diseases causing mutant that leads to protein destabilization and aggregation. In this study, we utilized discrete molecular dynamics (DMD) simulations, which stipulated an outlook over the systematic action of C111S mutation in the A4V mutant that stabilizes the protein and impedes the formation of protein aggregation. Herewith, the findings from our study manifested that the mutation of C111S in SOD1 could aid in regaining the protein structural conformations that protect against the formation of toxic aggregates, thereby hindering the disease pathogenicity subtly. Hence, our study provides a feasible pharmaceutical strategy in developing the treatment for incurable ALS affecting the mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shastry, B.S. (2003). Neurodegenerative disorders of protein aggregation. Neurochemistry International, 43(1), 1–7. https://doi.org/10.1016/S0197-0186(02)00196-1.

    Article  CAS  PubMed  Google Scholar 

  2. Balch, W.E., Morimoto, R.I., Dillin, A., & Kelly, J.W. (2008). Adapting proteostasis for disease intervention. Science, 319(5865), 916–919. https://doi.org/10.1126/science.1141448.

    Article  CAS  PubMed  Google Scholar 

  3. Ciryam, P., Tartaglia, G.G., Morimoto, R.I., Dobson, C.M., & Vendruscolo, M. (2013). Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Reports, 5(3), 781–790. https://doi.org/10.1016/j.celrep.2013.09.043.

    Article  CAS  PubMed  Google Scholar 

  4. David, D.C., Ollikainen, N., Trinidad, J.C., Cary, M.P., Burlingame, A.L., & Kenyon, C. (2010). Widespread protein aggregation as an inherent part of aging in C. elegans. PLOS Biology, 8(8), e1000450. https://doi.org/10.1371/journal.pbio.1000450.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rowland, L.P., & Shneider, N.A. (2001). Amyotrophic lateral sclerosis. New England Journal of Medicine, 344(22), 1688–1700. https://doi.org/10.1056/NEJM200105313442207.

    Article  CAS  PubMed  Google Scholar 

  6. Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson, S.D., Ohama, E., & Cleveland, D.W. (1998). Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science, 281(5384), 1851–1854. https://doi.org/10.1126/science.281.5384.1851.

    Article  CAS  PubMed  Google Scholar 

  7. Renton, A.E., Chiò, A., & Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience, 17(1), 17–23. https://doi.org/10.1038/nn.3584.

    Article  CAS  PubMed  Google Scholar 

  8. Nizzardo, M., Simone, C., Rizzo, F., Ulzi, G., Ramirez, A., Rizzuti, M., & Corti, S. (2016). Morpholino-mediated SOD1 reduction ameliorates an amyotrophic lateral sclerosis disease phenotype. Scientific Reports, 6, 21301. https://doi.org/10.1038/srep21301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bucchia, M., Ramirez, A., Parente, V., Simone, C., Nizzardo, M., Magri, F., & Corti, S. (2015). Therapeutic development in amyotrophic lateral sclerosis. Clinical Therapeutics, 37(3), 668–680. https://doi.org/10.1016/j.clinthera.2014.12.020.

    Article  PubMed  Google Scholar 

  10. Miller, R.G., Mitchell, J.D., Lyon, M., & Moore, D.H. (2003). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 4(3), 191–206.

    Article  CAS  Google Scholar 

  11. Banci, L., Bertini, I., Boca, M., Calderone, V., Cantini, F., Girotto, S., & Vieru, M. (2009). Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Proceedings of the National Academy of Sciences, 106(17), 6980–6985. https://doi.org/10.1073/pnas.0809845106.

    Article  CAS  Google Scholar 

  12. Rotunno, M.S. & Bosco, D.A. (2013). An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Frontiers in Cellular Neuroscience, 7, 253. https://doi.org/10.3389/fncel.2013.00253.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lasiene, J., Komine, O., Fujimori-Tonou, N., Powers, B., Endo, F., Watanabe, S., & Yamanaka, K. (2016). Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons. Acta Neuropathologica Communications, 4, 15. https://doi.org/10.1186/s40478-016-0286-7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kato, S., Sumi-Akamaru, H., Fujimura, H., Sakoda, S., Kato, M., Hirano, A., & Ohama, E. (2001). Copper chaperone for superoxide dismutase co-aggregates with superoxide dismutase 1 (SOD1) in neuronal Lewy body-like hyaline inclusions: an immunohistochemical study on familial amyotrophic lateral sclerosis with SOD1 gene mutation. Acta Neuropathologica, 102(3), 233–238.

    CAS  PubMed  Google Scholar 

  15. Proctor, E.A., Fee, L., Tao, Y., Redler, R.L., Fay, J.M., Zhang, Y., & Dokholyan, N.V. (2016). Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences, 113(3), 614–619. https://doi.org/10.1073/pnas.1516725113.

    Article  CAS  Google Scholar 

  16. Kato, S., Takikawa, M., Nakashima, K., Hirano, A., Cleveland, D.W., Kusaka, H., & Ohama, E. (2000). New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: inclusions containing SOD1 in neurons and astrocytes. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 1(3), 163–184.

    Article  CAS  Google Scholar 

  17. Julien, J.-P. (2007). ALS: astrocytes move in as deadly neighbors. Nature Neuroscience, 10(5), 535–537. https://doi.org/10.1038/nn0507-535.

    Article  CAS  PubMed  Google Scholar 

  18. Fridovich, I. (1978). The biology of oxygen radicals. Science, 201(4359), 875–880. https://doi.org/10.1126/science.210504.

    Article  CAS  PubMed  Google Scholar 

  19. Banci, L., Bertini, I., Cantini, F., D’Onofrio, M., & Viezzoli, M. S. (2002). Structure and dynamics of copper-free SOD: The protein before binding copper. Protein Science: A Publication of the Protein Society, 11(10), 2479–2492.

    Article  CAS  Google Scholar 

  20. Banci, L., Bertini, I., Boca, M., Girotto, S., Martinelli, M., Valentine, J.S., & Vieru, M. (2008). SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. PLOS ONE, 3(2), e1677. https://doi.org/10.1371/journal.pone.0001677.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, H.-T., Jiao, M., Chen, J., & Liang, Y. (2010). Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase. Acta Biochimica et Biophysica Sinica, 42(3), 183–194. https://doi.org/10.1093/abbs/gmq005.

    Article  CAS  PubMed  Google Scholar 

  22. Valentine, J.S., Doucette, P.A., & Zittin Potter, S. (2005). Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annual Review of Biochemistry, 74, 563–593. https://doi.org/10.1146/annurev.biochem.72.121801.161647.

    Article  CAS  PubMed  Google Scholar 

  23. Lo Conte, M., & Carroll, K.S. (2013). The redox biochemistry of protein sulfenylation and sulfinylation. The Journal of Biological Chemistry, 288(37), 26480–26488. https://doi.org/10.1074/jbc.R113.467738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujiwara, N., Nakano, M., Kato, S., Yoshihara, D., Ookawara, T., Eguchi, H., & Suzuki, K. (2007). Oxidative modification to cysteine sulfonic acid of Cys111 in human copper-zinc superoxide dismutase. The Journal of Biological Chemistry, 282(49), 35933–35944. https://doi.org/10.1074/jbc.M702941200.

    Article  CAS  PubMed  Google Scholar 

  25. Wilcox, K.C., Zhou, L., Jordon, J.K., Huang, Y., Yu, Y., Redler, R.L., & Dokholyan, N.V. (2009). Modifications of superoxide dismutase (SOD1) in human erythrocytes. The Journal of Biological Chemistry, 284(20), 13940–13947. https://doi.org/10.1074/jbc.M809687200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redler, R.L., Wilcox, K.C., Proctor, E.A., Fee, L., Caplow, M., & Dokholyan, N.V. (2011). Glutathionylation at Cys-111 induces dissociation of wild type and FALS mutant SOD1 dimers. Biochemistry, 50(32), 7057–7066. https://doi.org/10.1021/bi200614y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cozzolino, M., Amori, I., Pesaresi, M.G., Ferri, A., Nencini, M., & Carrì, M.T. (2008). Cysteine 111 affects aggregation and cytotoxicity of mutant Cu,Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. Journal of Biological Chemistry, 283(2), 866–874. https://doi.org/10.1074/jbc.M705657200.

    Article  CAS  PubMed  Google Scholar 

  28. Nagano, S., Takahashi, Y., Yamamoto, K., Masutani, H., Fujiwara, N., Urushitani, M., & Araki, T. (2015). A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS. Human Molecular Genetics, 24(12), 3427–3439. https://doi.org/10.1093/hmg/ddv093.

    Article  CAS  PubMed  Google Scholar 

  29. Roberts, B.L.T., Patel, K., Brown, H.H., & Borchelt, D.R. (2012). Role of disulfide cross-linking of mutant SOD1 in the formation of inclusion-body-like structures. PLOS ONE, 7(10), e47838. https://doi.org/10.1371/journal.pone.0047838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fay, J.M., Zhu, C., Proctor, E.A., Tao, Y., Cui, W., Ke, H., & Dokholyan, N.V. (2016). A phosphomimetic mutation stabilizes SOD1 and rescues cell viability in the context of an ALS-associated mutation. Structure, 24(11), 1898–1906. https://doi.org/10.1016/j.str.2016.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yim, H.-S Kang, J.-H Chock, P.B., Stadtman, E.R., & Yim, M.B. (1997). A familial amyotrophic lateral sclerosis-associated A4V Cu,Zn-superoxide dismutase mutant has a lower Km for hydrogen peroxide correlation between clinical severity and the Km value. Journal of Biological Chemistry, 272(14), 8861–8863. https://doi.org/10.1074/jbc.272.14.8861.

    Article  CAS  PubMed  Google Scholar 

  32. Wright, G.S.A., Antonyuk, S.V., Kershaw, N.M., Strange, R.W., & Samar Hasnain, S. (2013). Ligand binding and aggregation of pathogenic SOD1. Nature Communications, 4, 1758. https://doi.org/10.1038/ncomms2750.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schmidlin, T., Kennedy, B.K., & Daggett, V. (2009). Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V. Biophysical Journal, 97(6), 1709–1718. https://doi.org/10.1016/j.bpj.2009.06.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carballo-Pacheco, M., & Strodel, B. (2016). Advances in the simulation of protein aggregation at the atomistic scale. The Journal of Physical Chemistry B, 120(12), 2991–2999. https://doi.org/10.1021/acs.jpcb.6b00059.

    Article  CAS  PubMed  Google Scholar 

  35. Carballo-Pacheco, M., Ismail, A.E., & Strodel, B. (2015). Oligomer formation of toxic and functional amyloid peptides studied with atomistic simulations. The Journal of Physical Chemistry B, 119(30), 9696–9705. https://doi.org/10.1021/acs.jpcb.5b04822.

    Article  CAS  PubMed  Google Scholar 

  36. Riccardi, L., Nguyen, P.H., & Stock, G. (2012). Construction of the free energy landscape of peptide aggregation from molecular dynamics simulations. Journal of Chemical Theory and Computation, 8(4), 1471–1479. https://doi.org/10.1021/ct200911w.

    Article  CAS  PubMed  Google Scholar 

  37. Kalsi, N., Gopalakrishnan, C., Rajendran, V., & Purohit, R. (2016). Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K). Journal of Biomolecular Structure & Dynamics, 34, 1–11. https://doi.org/10.1080/07391102.2015.1127774.

  38. Kumar, A., & Purohit, R. (2012). Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutation Research, 738-739, 28–37. https://doi.org/10.1016/j.mrfmmm.2012.08.005.

    Article  CAS  PubMed  Google Scholar 

  39. Rajendran, V., & Sethumadhavan, R. (2014). Drug resistance mechanism of PncA in Mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 32(2), 209–221. https://doi.org/10.1080/07391102.2012.759885.

    Article  CAS  Google Scholar 

  40. Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation P29S in RAC1 on tumorigenesis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(11), 15293–15304. https://doi.org/10.1007/s13277-016-5329-y.

    Article  CAS  Google Scholar 

  41. Rajendran, V., Purohit, R., & Sethumadhavan, R. (2012). In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids, 43(2), 603–615. https://doi.org/10.1007/s00726-011-1108-7.

    Article  CAS  PubMed  Google Scholar 

  42. Purohit, R., Rajendran, V., & Sethumadhavan, R. (2010). Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and Isoniazid susceptibility: An in silico analysis. Journal of Molecular Modeling, 17(4), 869–877. https://doi.org/10.1007/s00894-010-0785-6.

    Article  PubMed  Google Scholar 

  43. Purohit, R. (2014). Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. Journal of Biomolecular Structure & Dynamics, 32(7), 1033–1046. https://doi.org/10.1080/07391102.2013.803264.

    Article  CAS  Google Scholar 

  44. Kumar, A., Randhawa, V., Acharya, V., Singh, K., & Kumar, S. (2016). Amino acids flanking the central core of Cu,Zn superoxide dismutase are important in retaining enzyme activity after autoclaving. Journal of Biomolecular Structure and Dynamics, 34(3), 475–485. https://doi.org/10.1080/07391102.2015.1049551.

    Article  CAS  PubMed  Google Scholar 

  45. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., & Bourne, P.E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q.

    Article  CAS  PubMed  Google Scholar 

  47. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089 https://doi.org/10.1063/1.464397.

    Article  CAS  Google Scholar 

  48. Shirvanyants, D., Ding, F., Tsao, D., Ramachandran, S., & Dokholyan, N.V. (2012). Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization. The Journal of Physical Chemistry B, 116(29), 8375–8382. https://doi.org/10.1021/jp2114576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ding, F., Tsao, D., Nie, H., & Dokholyan, N.V. (2008). Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure, 16(7), 1010–1018. https://doi.org/10.1016/j.str.2008.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ding, F., Tsao, D., Nie, H., & Dokholyan, N.V. (2008). Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure, 16(7), 1010–1018. https://doi.org/10.1016/j.str.2008.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lazaridis, T., & Karplus, M. (1999). Effective energy function for proteins in solution. Proteins, 35(2), 133–152.

    Article  CAS  PubMed  Google Scholar 

  52. Andersen, H.C. (1980). Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics, 72(4), 2384–2393. https://doi.org/10.1063/1.439486.

    Article  CAS  Google Scholar 

  53. Ding, F., Tsao, D., Nie, H., & Dokholyan, N.V. (2008). Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure, 16(7), 1010–1018. https://doi.org/10.1016/j.str.2008.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amadei, A., Linssen, A.B., & Berendsen, H.J. (1994). Essential dynamics of proteins. Proteins Structure Function and Bioinformatics, 17(4), 412–425.

  55. Likić, V.A., Gooley, P.R., Speed, T.P., & Strehler, E.E. (2005). A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics. Protein Science: A Publication of the Protein Society, 14(12), 2955–2963. https://doi.org/10.1110/ps.051681605.

    Article  Google Scholar 

  56. Khare, S.D., & Dokholyan, N.V. (2006). Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3147–3152. https://doi.org/10.1073/pnas.0511266103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmidlin, T., Kennedy, B.K., & Daggett, V. (2009). Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V. Biophysical Journal, 97(6), 1709–1718. https://doi.org/10.1016/j.bpj.2009.06.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Srinivasan, E., & Rajasekaran, R. (2016). Computational investigation of curcumin, a natural polyphenol that inhibits the destabilization and the aggregation of human SOD1 mutant (Ala4Val), RSC Advances, 6(104), 102744–102753. https://doi.org/10.1039/C6RA21927F.

  59. Srinivasan, E., & Rajasekaran, R. (2016). Computational simulation analysis on human SOD1 mutant (H80R) exposes the structural destabilization and the deviation of Zn binding that directs familial amyotrophic lateral sclerosis. Journal of Biomolecular Structure & Dynamics, 35, 1–9. https://doi.org/10.1080/07391102.2016.1227723.

  60. Ding, F., & Dokholyan, N.V. (2008). Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proceedings of the National Academy of Sciences, 105(50), 19696–19701. https://doi.org/10.1073/pnas.0803266105.

    Article  CAS  Google Scholar 

  61. Coskuner, O., Wise-Scira, O., Perry, G., & Kitahara, T. (2013). The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β Alloforms. ACS Chemical Neuroscience, 4(2), 310–320. https://doi.org/10.1021/cn300149j.

    Article  CAS  PubMed  Google Scholar 

  62. Ivanova, M.I., Sievers, S.A., Guenther, E.L., Johnson, L.M., Winkler, D.D., Galaleldeen, A., & Eisenberg, D.S. (2014). Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 197–201. https://doi.org/10.1073/pnas.1320786110.

    Article  CAS  PubMed  Google Scholar 

  63. Keerthana, S.P., & Kolandaivel, P. (2015). Structural investigation on the electrostatic loop of native and mutated SOD1 and their interaction with therapeutic compounds. RSC Advances, 5(44), 34630–34644. https://doi.org/10.1039/C5RA00286A.

    Article  CAS  Google Scholar 

  64. Viet, M.H., Ngo, S.T., Lam, N.S., & Li, M.S. (2011). Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. The Journal of Physical Chemistry B, 115(22), 7433–7446. https://doi.org/10.1021/jp1116728.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the management of VIT University for providing the facilities and encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajasekaran.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, E., Rajasekaran, R. Cysteine to Serine Conversion at 111th Position Renders the Disaggregation and Retains the Stabilization of Detrimental SOD1 A4V Mutant Against Amyotrophic Lateral Sclerosis in Human—A Discrete Molecular Dynamics Study. Cell Biochem Biophys 76, 231–241 (2018). https://doi.org/10.1007/s12013-017-0830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0830-5

Keywords

Navigation