Skip to main content

Advertisement

Log in

Lung as a Niche for Hematopoietic Progenitors

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Platelets are released from megakaryocytes. The bone marrow has been proposed to be the major site where this process occurs. Lefrançais et al. (2017) using state-of-the-art techniques including two-photon microscopy, in vivo lineage-tracing technologies, and sophisticated lung transplants reveal that the lung is also a primary site for platelet biogenesis. Strikingly, lung megakaryocytes can completely reconstitute platelet counts in the blood in mice with thrombocytopenia. This study also shows that hematopoietic progenitors, with capacity to repopulate the bone marrow after irradiation, are present in the lungs. This work brings a novel unexpected role for the lung as a niche for hematopoiesis. The emerging knowledge from this research may be important for the treatment of several disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Machlus, K. R., Thon, J. N., & Italiano Jr., J. E. (2014). Interpreting the developmental dance of the megakaryocyte: A review of the cellular and molecular processes mediating platelet formation. British Journal of Haematology, 165(2), 227–236.

    Article  PubMed  Google Scholar 

  2. He, S., Ekman, G. J., & Hedner, U. (2005). The effect of platelets on fibrin gel structure formed in the presence of recombinant factor VIIa in hemophilia plasma and in plasma from a patient with Glanzmann thrombasthenia. Journal of Thrombosis and Haemostasis : JTH, 3(2), 272–279.

    Article  CAS  PubMed  Google Scholar 

  3. Ho-Tin-Noe, B., Demers, M., & Wagner, D. D. (2011). How platelets safeguard vascular integrity. Journal of Thrombosis and Haemostasis : JTH, 9(Suppl 1), 56–65.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bates, E. R., & Lau, W. C. (2005). Controversies in antiplatelet therapy for patients with cardiovascular disease. Circulation, 111(17), e267–e271.

    Article  CAS  PubMed  Google Scholar 

  5. Laki, K. (1972). Our ancient heritage in blood clotting and some of its consequences. Annals of the New York Academy of Sciences, 202, 297–307.

    Article  CAS  PubMed  Google Scholar 

  6. Osman, A., Hitzler, W. E., & Provost, P. (2017). The platelets’ perspective to pathogen reduction technologies. Platelets, 1–8.

  7. Weyrich, A. S., & Zimmerman, G. A. (2004). Platelets: Signaling cells in the immune continuum. Trends in Immunology, 25(9), 489–495.

    Article  CAS  PubMed  Google Scholar 

  8. Tesfamariam, B. (2016). Involvement of platelets in tumor cell metastasis. Pharmacology & Therapeutics, 157, 112–119.

    Article  CAS  Google Scholar 

  9. Smyth, S. S., McEver, R. P., Weyrich, A. S., Morrell, C. N., Hoffman, M. R., Arepally, G. M., French, P. A., Dauerman, H. L., Becker, R. C., & Platelet Colloquium, P. (2009). Platelet functions beyond hemostasis. Journal of Thrombosis and Haemostasis : JTH, 7(11), 1759–1766.

    Article  CAS  PubMed  Google Scholar 

  10. Semple, J. W., Italiano Jr., J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews Immunology, 11(4), 264–274.

    Article  CAS  PubMed  Google Scholar 

  11. Davi, G., & Patrono, C. (2007). Platelet activation and atherothrombosis. The New England Journal of Medicine, 357(24), 2482–2494.

    Article  CAS  PubMed  Google Scholar 

  12. Engelmann, B., & Massberg, S. (2013). Thrombosis as an intravascular effector of innate immunity. Nature Reviews Immunology, 13(1), 34–45.

    Article  CAS  PubMed  Google Scholar 

  13. Danielli, J. F. (1940). Capillary permeability and oedema in the perfused frog. The Journal of Physiology, 98(1), 109–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robb-Smith, A. H. (1967). Why the platelets were discovered. British Journal of Haematology, 13(4), 618–637.

    Article  CAS  PubMed  Google Scholar 

  15. Pease, D. C. (1956). An electron microscopic study of red bone marrow. Blood, 11(6), 501–526.

    CAS  PubMed  Google Scholar 

  16. Italiano Jr., J. E., Lecine, P., Shivdasani, R. A., & Hartwig, J. H. (1999). Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. The Journal of Cell Biology, 147(6), 1299–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakeff, A., & Maat, B. (1974). Separation of megakaryocytes from mouse bone marrow by velocity sedimentation. Blood, 43(4), 591–595.

    CAS  PubMed  Google Scholar 

  18. Weyrich, A. S., & Zimmerman, G. A. (2013). Platelets in lung biology. Annual Review of Physiology, 75, 569–591.

    Article  CAS  PubMed  Google Scholar 

  19. Geddis, A. E., & Kaushansky, K. (2007). Immunology. The root of platelet production. Science, 317(5845), 1689–1691.

    Article  CAS  PubMed  Google Scholar 

  20. Howell, W. H., & Donahue, D. D. (1937). The production of blood platelets in the lungs. The Journal of Experimental Medicine, 65(2), 177–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kallinikos-Maniatis, A. (1969). Megakaryocytes and platelets in central venous and arterial blood. Acta Haematologica, 42(6), 330–335.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao da, W., Yang, M., Yang, J., Hon, K. L., & Fok, F. T. (2006). Lung damage may induce thrombocytopenia. Platelets, 17(5), 347–349.

    Article  PubMed  CAS  Google Scholar 

  23. Lefrancais, E., Ortiz-Munoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D. M., Thornton, E. E., Headley, M. B., David, T., Coughlin, S. R., et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544(7648), 105–109.

    Article  CAS  PubMed  Google Scholar 

  24. Sola-Visner, M. C., Christensen, R. D., Hutson, A. D., & Rimsza, L. M. (2007). Megakaryocyte size and concentration in the bone marrow of thrombocytopenic and nonthrombocytopenic neonates. Pediatric Research, 61(4), 479–484.

    Article  PubMed  Google Scholar 

  25. Pang, L., Weiss, M. J., & Poncz, M. (2005). Megakaryocyte biology and related disorders. The Journal of Clinical Investigation, 115(12), 3332–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Long, M. W., Williams, N., & Ebbe, S. (1982). Immature megakaryocytes in the mouse: Physical characteristics, cell cycle status, and in vitro responsiveness to thrombopoietic stimulatory factor. Blood, 59(3), 569–575.

    CAS  PubMed  Google Scholar 

  27. Gordon, M. Y., Bearpark, A. D., Clarke, D., & Dowding, C. R. (1990). Haemopoietic stem cell subpopulations in mouse and man: Discrimination by differential adherence and marrow repopulating ability. Bone Marrow Transplantation, 5(Suppl 1), 6–8.

    PubMed  Google Scholar 

  28. Ogawa, M. (1993). Differentiation and proliferation of hematopoietic stem cells. Blood, 81(11), 2844–2853.

    CAS  PubMed  Google Scholar 

  29. Morita, Y., Iseki, A., Okamura, S., Suzuki, S., Nakauchi, H., & Ema, H. (2011). Functional characterization of hematopoietic stem cells in the spleen. Experimental Hematology, 39(3), 351–359 e353.

    Article  PubMed  Google Scholar 

  30. Gross, S., & Luckey, C. (1969). The oxygen tension-platelet relationship in cystic fibrosis. The American Review of Respiratory Disease, 100(4), 513–517.

    CAS  PubMed  Google Scholar 

  31. O'Sullivan, B. P., & Michelson, A. D. (2006). The inflammatory role of platelets in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 173(5), 483–490.

    Article  PubMed  CAS  Google Scholar 

  32. Kemona-Chetnik, I., Bodzenta-Lukaszyk, A., Butkiewicz, A., & Dymnicka-Piekarska, V. (2007). Kemona H: [Thrombocytopoesis in allergic asthma]. Polskie Archiwum Medycyny Wewnętrznej, 117(1–2), 9–13.

    CAS  PubMed  Google Scholar 

  33. Kornerup, K. N., & Page, C. P. (2007). The role of platelets in the pathophysiology of asthma. Platelets, 18(5), 319–328.

    Article  CAS  PubMed  Google Scholar 

  34. Stoll, P., & Lommatzsch, M. (2014). Platelets in asthma: Does size matter? Respiration; International Review of Thoracic Diseases, 88(1), 22–23.

    Article  PubMed  Google Scholar 

  35. Tozkoparan, E., Deniz, O., Ucar, E., Bilgic, H., & Ekiz, K. (2007). Changes in platelet count and indices in pulmonary tuberculosis. Clinical Chemistry and Laboratory Medicine, 45(8), 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  36. Gunluoglu, G., Yazar, E. E., Veske, N. S., Seyhan, E. C., & Altin, S. (2014). Mean platelet volume as an inflammation marker in active pulmonary tuberculosis. Multidisciplinary Respiratory Medicine, 9(1), 11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kroll, M. H., & Afshar-Kharghan, V. (2012). Platelets in pulmonary vascular physiology and pathology. Pulmonary Circulation, 2(3), 291–308.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Al-Drees, M. A., Yeo, J. H., Boumelhem, B. B., Antas, V. I., Brigden, K. W., Colonne, C. K., & Fraser, S. T. (2015). Making blood: The Haematopoietic niche throughout ontogeny. Stem Cells International, 2015, 571893.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Palis, J., Robertson, S., Kennedy, M., Wall, C., & Keller, G. (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22), 5073–5084.

    CAS  PubMed  Google Scholar 

  40. Tavian, M., & Peault, B. (2005). Embryonic development of the human hematopoietic system. The International Journal of Developmental Biology, 49(2–3), 243–250.

    Article  CAS  PubMed  Google Scholar 

  41. Bowman, T. V., & Zon, L. I. (2009). Lessons from the niche for generation and expansion of hematopoietic stem cells. Drug Discovery Today Therapeutic Strategies, 6(4), 135–140.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Swain, A., Inoue, T., Tan, K. S., Nakanishi, Y., & Sugiyama, D. (2014). Intrinsic and extrinsic regulation of mammalian hematopoiesis in the fetal liver. Histology and Histopathology, 29(9), 1077–1082.

    PubMed  Google Scholar 

  43. Tanaka, Y., Inoue-Yokoo, T., Kulkeaw, K., Yanagi-Mizuochi, C., Shirasawa, S., Nakanishi, Y., & Sugiyama, D. (2015). Embryonic hematopoietic progenitor cells reside in muscle before bone marrow hematopoiesis. PloS One, 10(9), e0138621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Medvinsky, A. L., Samoylina, N. L., Muller, A. M., & Dzierzak, E. A. (1993). An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature, 364(6432), 64–67.

    Article  CAS  PubMed  Google Scholar 

  45. Medvinsky, A., Rybtsov, S., & Taoudi, S. (2011). Embryonic origin of the adult hematopoietic system: Advances and questions. Development, 138(6), 1017–1031.

    Article  CAS  PubMed  Google Scholar 

  46. Baron, M. H. (2005). Early patterning of the mouse embryo: Implications for hematopoietic commitment and differentiation. Experimental Hematology, 33(9), 1015–1020.

    Article  PubMed  Google Scholar 

  47. Baron, M. H., Isern, J., & Fraser, S. T. (2012). The embryonic origins of erythropoiesis in mammals. Blood, 119(21), 4828–4837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barminko, J., Reinholt, B., & Baron, M. H. (2016). Development and differentiation of the erythroid lineage in mammals. Developmental and Comparative Immunology, 58, 18–29.

    Article  CAS  PubMed  Google Scholar 

  49. Kumaravelu, P., Hook, L., Morrison, A. M., Ure, J., Zhao, S., Zuyev, S., Ansell, J., & Medvinsky, A. (2002). Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): Role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development, 129(21), 4891–4899.

    CAS  PubMed  Google Scholar 

  50. Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F., & Dzierzak, E. (1994). Development of hematopoietic stem cell activity in the mouse embryo. Immunity, 1(4), 291–301.

    Article  CAS  PubMed  Google Scholar 

  51. Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86(6), 897–906.

    Article  CAS  PubMed  Google Scholar 

  52. Sugiyama, D., & Tsuji, K. (2006). Definitive hematopoiesis from endothelial cells in the mouse embryo; a simple guide. Trends in Cardiovascular Medicine, 16(2), 45–49.

    Article  CAS  PubMed  Google Scholar 

  53. Lux, C. T., Yoshimoto, M., McGrath, K., Conway, S. J., Palis, J., & Yoder, M. C. (2008). All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood, 111(7), 3435–3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khan, J. A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal-Estape, A., Pinho, S., Ciero, P., Nakahara, F., Ma'ayan, A., et al. (2016). Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 351(6269), 176–180.

    Article  CAS  PubMed  Google Scholar 

  55. Bozzini, C. E., Barrio Rendo, M. E., Devoto, F. C., & Epper, C. E. (1970). Studies on medullary and extramedullary erythropoiesis in the adult mouse. The American Journal of Physiology, 219(3), 724–728.

    CAS  PubMed  Google Scholar 

  56. Bowen, J. M., Perry, A. M., Quist, E., & Akhtari, M. (2015). Extramedullary hematopoiesis in a sentinel lymph node as an early sign of chronic myelomonocytic leukemia. Case Reports in Pathology, 2015, 594970.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schnuelle, P., Waldherr, R., Lehmann, K. J., Woenckhaus, J., Back, W., Niemir, Z., & van der Woude, F. J. (1999). Idiopathic myelofibrosis with extramedullary hematopoiesis in the kidneys. Clinical Nephrology, 52(4), 256–262.

    CAS  PubMed  Google Scholar 

  58. Woodward, N., Ancliffe, P., Griffiths, M. H., & Cohen, S. (2000). Renal myelofibrosis: An unusual cause of renal impairment. Nephrology, Dialysis, Transplantation, 15(2), 257–258.

    Article  CAS  PubMed  Google Scholar 

  59. Lewis, D. J., Moul, J. W., Williams, S. C., Sesterhenn, I. A., & Colon, E. (1994). Perirenal liposarcoma containing extramedullary hematopoiesis associated with renal cell carcinoma. Urology, 43(1), 106–109.

    Article  CAS  PubMed  Google Scholar 

  60. Guenechea, G., Gan, O. I., Dorrell, C., & Dick, J. E. (2001). Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nature Immunology, 2(1), 75–82.

    Article  CAS  PubMed  Google Scholar 

  61. Ema, H., Sudo, K., Seita, J., Matsubara, A., Morita, Y., Osawa, M., Takatsu, K., Takaki, S., & Nakauchi, H. (2005). Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Developmental Cell, 8(6), 907–914.

    Article  CAS  PubMed  Google Scholar 

  62. Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K. L., Ema, H., & Nakauchi, H. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell, 154(5), 1112–1126.

    Article  CAS  PubMed  Google Scholar 

  63. Purton, L. E., & Scadden, D. T. (2007). Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell, 1(3), 263–270.

    Article  CAS  PubMed  Google Scholar 

  64. Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., et al. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502(7473), 637–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asada N., Kunisaki Y., Pierce H., Wang Z., Fernandez N.F., Birbrair A., Ma’ayan A., Frenette P. S. (2017). Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature cell biology.

  66. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25.

    CAS  PubMed  Google Scholar 

  67. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121(7), 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  68. Sena, I., Prazeres, P., Santos, G., Borges, I., Azevedo, P., Andreotti, J., Almeida, V., Paiva, A., Guerra, D., Lousado, L., Souto, L., Mintz, A., & Birbrair, A (2017). Identity of Gli1+ cells in the bone marrow. Experimental Hematology. In press

  69. Birbrair, A., & Delbono, O. (2015). Pericytes are essential for skeletal muscle formation. Stem Cell Reviews, 11(4), 547–548.

    Article  PubMed  Google Scholar 

  70. Birbrair A., Frenette P.S. (2016). Niche heterogeneity in the bone marrow. Annals of the new York Academy of Sciences, 1370, 82–96. 

  71. Birbrair, A., Zhang, T., Files, D. C., Mannava, S., Smith, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Research & Therapy, 5(6), 122.

    Article  CAS  Google Scholar 

  72. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Research, 10(1), 67–84.

    Article  CAS  PubMed  Google Scholar 

  73. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development, 22(16), 2298–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2013). Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. American Journal of Physiology. Cell Physiology, 305(11), C1098–C1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Pericytes: Multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Frontiers in Aging Neuroscience, 6, 245.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science (London, England), 128(2), 81–93.

    Article  CAS  Google Scholar 

  77. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology. Cell Physiology, 307(1), C25–C38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro dos Santos GS, Mintz A. et al. (2017) Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology.

  79. Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, Goncalves R, Mintz A, Delbono O (2017) How plastic are pericytes? Stem cells and development.

  80. Birbrair, A., Zhang T., Wang ZM., Messi ML., Enikolopov, GN., Mintz, A., & Delbono, O. (2013). Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Experimental Cell Research, 319(1), 45-63.

  81. Birbrair, A., Wang, ZM., Messi, ML., Enikolopov, GN., Delbono, O., & Rota, M. (2011) Nestin-GFP Transgene Reveals Neural Precursor Cells in Adult Skeletal Muscle. PLoS ONE, 6(2), e16816.

  82. Birbrair, A., Sattiraju, A., Zhu, D., Zulato, G., Batista, B., Nguyen, VT. et al. (2017) Novel Peripherally Derived Neural-Like Stem Cells as Therapeutic Carriers for Treating Glioblastomas. STEM CELLS Translational Medicine, 6(2), 471–481.

  83. Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., Conway, S., Orkin, S. H., Yoder, M. C., & Mikkola, H. K. (2008). The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell, 2(3), 252–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M., & Weibel, E. R. (1982). Cell number and cell characteristics of the normal human lung. The American Review of Respiratory Disease, 126(2), 332–337.

    CAS  PubMed  Google Scholar 

  85. Bruns, I., Lucas, D., Pinho, S., Ahmed, J., Lambert, M. P., Kunisaki, Y., Scheiermann, C., Schiff, L., Poncz, M., Bergman, A., et al. (2014). Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 20(11), 1315–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakamura-Ishizu, A., Takubo, K., Fujioka, M., & Suda, T. (2014). Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochemical and Biophysical Research Communications, 454(2), 353–357.

    Article  CAS  PubMed  Google Scholar 

  87. Heazlewood, S. Y., Neaves, R. J., Williams, B., Haylock, D. N., Adams, T. E., & Nilsson, S. K. (2013). Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Research, 11(2), 782–792.

    Article  CAS  PubMed  Google Scholar 

  88. Kaushansky, K., Lok, S., Holly, R. D., Broudy, V. C., Lin, N., Bailey, M. C., Forstrom, J. W., Buddle, M. M., Oort, P. J., Hagen, F. S., et al. (1994). Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature, 369(6481), 568–571.

    Article  CAS  PubMed  Google Scholar 

  89. Kimura, S., Roberts, A. W., Metcalf, D., & Alexander, W. S. (1998). Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1195–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bersenev, A., Wu, C., Balcerek, J., & Tong, W. (2008). Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. The Journal of Clinical Investigation, 118(8), 2832–2844.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., et al. (2007). Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell, 1(6), 685–697.

    Article  CAS  PubMed  Google Scholar 

  92. de Graaf, C. A., Kauppi, M., Baldwin, T., Hyland, C. D., Metcalf, D., Willson, T. A., Carpinelli, M. R., Smyth, G. K., Alexander, W. S., & Hilton, D. J. (2010). Regulation of hematopoietic stem cells by their mature progeny. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21689–21694.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhao, M., Perry, J. M., Marshall, H., Venkatraman, A., Qian, P., He, X. C., Ahamed, J., & Li, L. (2014). Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nature Medicine, 20(11), 1321–1326.

    Article  CAS  PubMed  Google Scholar 

  94. Olson, T. S., Caselli, A., Otsuru, S., Hofmann, T. J., Williams, R., Paolucci, P., Dominici, M., & Horwitz, E. M. (2013). Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood, 121(26), 5238–5249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Soderberg, S. S., Karlsson, G., & Karlsson, S. (2009). Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Annals of the New York Academy of Sciences, 1176, 55–69.

    Article  PubMed  CAS  Google Scholar 

  96. Kent, D. G., Copley, M. R., Benz, C., Wohrer, S., Dykstra, B. J., Ma, E., Cheyne, J., Zhao, Y., Bowie, M. B., Zhao, Y., et al. (2009). Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood, 113(25), 6342–6350.

    Article  CAS  PubMed  Google Scholar 

  97. Sanjuan-Pla, A., Macaulay, I. C., Jensen, C. T., Woll, P. S., Luis, T. C., Mead, A., Moore, S., Carella, C., Matsuoka, S., Bouriez Jones, T., et al. (2013). Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 502(7470), 232–236.

    Article  CAS  PubMed  Google Scholar 

  98. Weibel, E. R. (1974). On pericytes, particularly their existence on lung capillaries. Microvascular Research, 8(2), 218–235.

    Article  CAS  PubMed  Google Scholar 

  99. Hung, C., Linn, G., Chow, Y. H., Kobayashi, A., Mittelsteadt, K., Altemeier, W. A., Gharib, S. A., Schnapp, L. M., & Duffield, J. S. (2013). Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 188(7), 820–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rock, J. R., Barkauskas, C. E., Cronce, M. J., Xue, Y., Harris, J. R., Liang, J., Noble, P. W., & Hogan, B. L. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 108(52), E1475–E1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ricard, N., Tu, L., Le Hiress, M., Huertas, A., Phan, C., Thuillet, R., Sattler, C., Fadel, E., Seferian, A., Montani, D., et al. (2014). Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation, 129(15), 1586–1597.

    Article  CAS  PubMed  Google Scholar 

  102. Shepro, D., & Morel, N. M. (1993). Pericyte physiology. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 7(11), 1031–1038.

    CAS  Google Scholar 

  103. Folman, C. C., Linthorst, G. E., van Mourik, J., van Willigen, G., de Jonge, E., Levi, M., de Haas, M., & von dem Borne, A. E. (2000). Platelets release thrombopoietin (Tpo) upon activation: Another regulatory loop in thrombocytopoiesis? Thrombosis and Haemostasis, 83(6), 923–930.

    CAS  PubMed  Google Scholar 

  104. Levesque, J. P., Hendy, J., Winkler, I. G., Takamatsu, Y., & Simmons, P. J. (2003). Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Experimental Hematology, 31(2), 109–117.

    Article  CAS  PubMed  Google Scholar 

  105. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., Crystal, R. G., Besmer, P., Lyden, D., Moore, M. A., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R. S., Arenzana-Seisdedos, F., Fujii, N., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687–694.

    Article  CAS  PubMed  Google Scholar 

  107. Valenzuela-Fernandez, A., Planchenault, T., Baleux, F., Staropoli, I., Le-Barillec, K., Leduc, D., Delaunay, T., Lazarini, F., Virelizier, J. L., Chignard, M., et al. (2002). Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. The Journal of Biological Chemistry, 277(18), 15677–15689.

    Article  CAS  PubMed  Google Scholar 

  108. Levesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N., & Simmons, P. J. (2001). Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood, 98(5), 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  109. Chow, A., Huggins, M., Ahmed, J., Hashimoto, D., Lucas, D., Kunisaki, Y., Pinho, S., Leboeuf, M., Noizat, C., van Rooijen, N., et al. (2013). CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature Medicine, 19(4), 429–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Meyer, A., Wang, W., Qu, J., Croft, L., Degen, J. L., Coller, B. S., & Ahamed, J. (2012). Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood, 119(4), 1064–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pinho, S., Lacombe, J., Hanoun, M., Mizoguchi, T., Bruns, I., Kunisaki, Y., & Frenette, P. S. (2013). PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. The Journal of Experimental Medicine, 210(7), 1351–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Notta, F., Doulatov, S., Laurenti, E., Poeppl, A., Jurisica, I., & Dick, J. E. (2011). Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science, 333(6039), 218–221.

    Article  CAS  PubMed  Google Scholar 

  114. Guezguez, B., Campbell, C. J., Boyd, A. L., Karanu, F., Casado, F. L., Di Cresce, C., Collins, T. J., Shapovalova, Z., Xenocostas, A., & Bhatia, M. (2013). Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell, 13(2), 175–189.

    Article  CAS  PubMed  Google Scholar 

  115. Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M., Thornton E.E., Headley M.B., David T., Coughlin S.R. et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544(7648), 105–109.

Download references

Acknowledgements

Alexander Birbrair is supported by a grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016); Akiva Mintz is supported by the National Institute of Health (1R01CA179072-01A1) and by the American Cancer Society Mentored Research Scholar grant (124443-MRSG-13-121-01-CDD). We thank Rosa Maria Esteves Arantes for her useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Birbrair.

Ethics declarations

Disclosures

The authors indicate no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, I., Sena, I., Azevedo, P. et al. Lung as a Niche for Hematopoietic Progenitors. Stem Cell Rev and Rep 13, 567–574 (2017). https://doi.org/10.1007/s12015-017-9747-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9747-z

Keywords

Navigation