Skip to main content

Advertisement

Log in

Steroid-Mediated Decrease in Blood Mesenchymal Stem Cells in Liver Transplant could Impact Long-Term Recovery

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Orthotopic liver transplant (OLT) remains the standard of care for end stage liver disease. To circumvent allo-rejection, OLT subjects receive gluococorticoids (GC). We investigated the effects of GC on endogenous mesenchymal stem (stromal) cells (MSCs) in OLT. This question is relevant because MSCs have regenerative potential and immune suppressor function. Phenotypic analyses of blood samples from 12 OLT recipients, at pre-anhepatic, anhepatic and post-transplant (2 h, Days 1 and 5) indicated a significant decrease in MSCs after GC injection. The MSCs showed better recovery in the blood from subjects who started with relatively low MSCs as compared to those with high levels at the prehepatic phase. This drop in MSCs appeared to be linked to GC since similar change was not observed in liver resection subjects. In order to understand the effects of GC on decrease MSC migration, in vitro studies were performed in transwell cultures. Untreated MSCs could not migrate towards the GC-exposed liver tissue, despite CXCR4 expression and the production of inflammatory cytokines from the liver cells. GC-treated MSCs were inefficient with respect to migration towards CXCL12, and this correlated with retracted cytoskeleton and motility. These dysfunctions were partly explained by decreases in the CXCL12/receptor axis. GC-associated decrease in MSCs in OLT recipients recovered post-transplant, despite poor migratory ability towards GC-exposed liver. In total, the study indicated that GC usage in transplant needs to be examined to determine if this could be reduced or avoided with adjuvant cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wald, O., Pappo, O., Safadi, R., et al. (2004). Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. European Journal of Immunology, 34, 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  2. Fausto, N., & Campbell, J. S. (2003). The role of hepatocytes and oval cells in liver regeneration and repopulation. Mechanisms of Development, 120, 117–130.

    Article  CAS  PubMed  Google Scholar 

  3. Russo, F. P., & Parola, M. (2011). Stem and progenitor cells in liver regeneration and repair. Cytotherapy, 13, 135–144.

    Article  PubMed  Google Scholar 

  4. Friedman, S. L. (2000). Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. The Journal of Biological Chemistry, 275, 2247–2250.

    Article  CAS  PubMed  Google Scholar 

  5. Valenti, L., Fracanzani, A. L., & Fargion, S. (2009). The immunopathogenesis of alcoholic and nonalcoholic steatohepatitis: Two triggers for one disease? Seminars in Immunopathology, 31, 359–369.

    Article  CAS  PubMed  Google Scholar 

  6. McCullough, A. J., O'Shea, R. S., & Dasarathy, S. (2011). Diagnosis and management of alcoholic liver disease. Journal of Digestive Diseases, 12, 257–262.

    Article  PubMed  Google Scholar 

  7. Kim, H. J., & Lee, H. W. (2013). Important predictor of mortality in patients with end-stage liver disease. Clinical and Molecular Hepatology, 19, 105–115.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Starzl, T. E., Groth, C. G., Brettschneider, L., et al. (1968). Orthotopic homotransplantation of the human liver. Annals of Surgery, 168, 392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Mahony, C. A., & Goss, J. A. (2012). The future of liver transplantation. Texas Heart Institute Journal, 39, 874.

    PubMed  PubMed Central  Google Scholar 

  10. Lucey, M. R., Terrault, N., Ojo, L., et al. (2013). Long-term management of the successful adult liver transplant: 2012 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Liver Transplantation, 19, 3–26.

    Article  PubMed  Google Scholar 

  11. Forbes, S. J. (2008). Stem cell therapy for chronic liver disease--choosing the right tools for the job. Gut, 57, 153–155.

    Article  PubMed  Google Scholar 

  12. Zhou, J., & Cidlowski, J. A. (2005). The human glucocorticoid receptor: One gene, multiple proteins and diverse responses. Steroids, 70, 407–417.

    Article  CAS  PubMed  Google Scholar 

  13. Coutinho, A. E., & Chapman, K. E. (2011). The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and Cellular Endocrinology, 335, 2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raimondo, M. L., & Burroughs, A. K. (2002). Single-agent immunosuppression after liver transplantation. Drugs, 62, 1587–1597.

    Article  CAS  PubMed  Google Scholar 

  15. Hass, R., Kasper, C., Böhm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS, 9, 1.

    Article  Google Scholar 

  16. Pisciotta, A., Carnevale, G., Meloni, S., et al. (2015). Human dental pulp stem cells (hDPSCs): Isolation, enrichment and comparative differentiation of two sub-populations. BMC Developmental Biology, 15, 1.

    Article  CAS  Google Scholar 

  17. Margini, C., Vukotic, R., Brodosi, L., Bernardi, M., & Andreone, P. (2014). Bone marrow derived stem cells for the treatment of end-stage liver disease. World Journal of Gastroenterology, 9098–9105.

  18. Sherman, L. S., Shaker, M., Mariotti, V., & Rameshwar, P. (2017). Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy, 19, 19–27.

    Article  PubMed  Google Scholar 

  19. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells, 28, 585–596.

    CAS  PubMed  Google Scholar 

  20. Kean, T. J., Lin, P., Caplan, A. I., & Dennis, J. E. (2013). MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells International, 2013, 732742.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Castillo, M., Liu, K., Bonilla, L., & Rameshwar, P. (2007). The immune properties of mesenchymal stem cells. International Journal of Biological Sciences, 3, 76.

    Google Scholar 

  22. Cho, K.-A., Ju, S.-Y., Cho, S. J., et al. (2009). Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow. Cell Biology International, 33, 772–777.

    Article  CAS  PubMed  Google Scholar 

  23. Popp, F. C., Renner, P., Eggenhofer, E., et al. (2009). Mesenchymal stem cells as immunomodulators after liver transplantation. Liver Transplantation, 15, 1192–1198.

    Article  PubMed  Google Scholar 

  24. Sato, K., Ozaki, K., Mori, M., Muroi, K., & Ozawa, K. (2010). Mesenchymal stromal cells for graft-versus-host disease: Basic aspects and clinical outcomes. Journal of Clinical and Experimental Hematopathology, 50, 79–89.

    Article  PubMed  Google Scholar 

  25. Kim, N., Im, K.-I., Lim, J.-Y., et al. (2013). Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: Experiments and practice. Annals of Hematology, 92, 1295–1308.

    Article  CAS  PubMed  Google Scholar 

  26. Kapoor, S., Patel, S. A., Kartan, S., Axelrod, D., Capitle, E., & Rameshwar, P. (2012). Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy–induced asthma. The Journal of Allergy and Clinical Immunology, 129, 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  27. Corcoran, K. E., Trzaska, K. A., Fernandes, H., et al. (2008). Mesenchymal stem cells in early entry of breast cancer. PloS One, 3, 1–10.

    Article  Google Scholar 

  28. Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-β. Journal of Immunology, 184, 5885–5894.

    Article  CAS  Google Scholar 

  29. Son, B. R., Marquez-Curtis, L. A., Kucia, M., et al. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 24, 1254–1264.

    Article  CAS  PubMed  Google Scholar 

  30. Hao, N.-B., Li, C.-Z., Lü, M.-H., et al. (2015). SDF-1/CXCR4 Axis promotes MSCs to repair liver injury partially through trans-differentiation and fusion with hepatocytes. Stem Cells International, 2015, 960387.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu, C., Yong, X., Li, C., et al. (2013). CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. The Journal of Surgical Research, 183, 427–434.

    Article  CAS  PubMed  Google Scholar 

  32. Won, Y.-W., Patel, A. N., & Bull, D. A. (2014). Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials, 35, 5627–5635.

    Article  CAS  PubMed  Google Scholar 

  33. De Becker, A., & Van Riet, I. (2016). Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World Journal of Stem Cells, 8, 73.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang, S., Lv, C., Yang, X., et al. (2014). Corticosterone mediates the inhibitory effect of restraint stress on the migration of mesenchymal stem cell to carbon tetrachloride-induced fibrotic liver by downregulating CXCR4/7 expression. Stem Cells and Development, 24, 587–596.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Würth, R., Bajetto, A., Harrison, J. K., Barbieri, F., & Florio, T. (2014). CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Frontiers in Cellular Neuroscience, 8, 144.

    PubMed  PubMed Central  Google Scholar 

  36. Chan, J. L., Tang, K. C., Patel, A. P., et al. (2006). Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood, 107, 4817–4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marquez-Curtis, L. A., & Janowska-Wieczorek, A. (2013). Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Research International, 2013, 561098.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Greco, S. J., Patel, S. A., Bryan, M., Pliner, L. F., Banerjee, D., & Rameshwar, P. (2011). AMD3100-mediated production of interleukin-1 from mesenchymal stem cells is key to chemosensitivity of breast cancer cells. American Journal of Cancer Research, 1, 701.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Soeder, Y., Loss, M., Johnson, C. L., et al. (2015). First-in-human case study: Multipotent adult progenitor cells for immunomodulation after liver transplantation. Stem Cells Translational Medicine, 4, 899–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shah, K. (2012). Mesenchymal stem cells engineered for cancer therapy. Advanced Drug Delivery Reviews, 64, 739–748.

    Article  CAS  PubMed  Google Scholar 

  41. Jones, B. J., & McTaggart, S. J. (2008). Immunosuppression by mesenchymal stromal cells: From culture to clinic. Experimental Hematology, 36, 733–741.

    Article  CAS  PubMed  Google Scholar 

  42. Hammond, A., Ramersdorfer, C., Palitzsch, K., Schölmerich, J., & Lock, G. (1999). Fatal liver failure after corticosteroid treatment of a hepatitis B virus carrier. Deutsche Medizinische Wochenschrift, 124, 687–690.

    Article  CAS  PubMed  Google Scholar 

  43. Steinberg, H., Webb, W. M., & Rafsky, H. A. (1952). Hepatomegaly with fatty infiltration secondary to cortisone therapy: Case report. Gastroenterology, 21, 304–309.

    CAS  PubMed  Google Scholar 

  44. Tacke, F. (2012). Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis & Tissue Repair, 5, 1.

    Article  Google Scholar 

  45. Yin, C., Evason, K. J., Asahina, K., & Stainier, D. Y. (2013). Hepatic stellate cells in liver development, regeneration, and cancer. The Journal of Clinical Investigation, 123, 1902–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kovacsovics-Bankowski, M., Mauch, K., Raber, A., et al. (2008). Pre-clinical safety testing supporting clinical use of allogeneic multipotent adult progenitor cells. Cytotherapy, 10, 730–742.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the FM Kirby Foundation. This work was performed in partial fullfilment of a doctoral thesis for NDW

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuriy Gubenko or Pranela Rameshwar.

Ethics declarations

Conflicts of Interest

The authors have no conflict to declare.

Additional information

The work is in partial fullfilment for the doctoral thesis of Nykia D. Walker.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, N.D., Mourad, Y., Liu, K. et al. Steroid-Mediated Decrease in Blood Mesenchymal Stem Cells in Liver Transplant could Impact Long-Term Recovery. Stem Cell Rev and Rep 13, 644–658 (2017). https://doi.org/10.1007/s12015-017-9751-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9751-3

Keywords

Navigation