Skip to main content

Advertisement

Log in

Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In embryonic development and throughout life, there are some cells can exhibit phenotypic plasticity. Phenotypic plasticity is the ability of cells to differentiate into multiple lineages. In normal development, plasticity is highly regulated whereas cancer cells re-activate this dynamic ability for their own progression. The re-activation of these mechanisms enables cancer cells to acquire a cancer stem cell (CSC) phenotype- a subpopulation of cells with increased ability to survive in a hostile environment and resist therapeutic insults. There are several contributors fuel CSC plasticity in different stages of disease progression such as a complex network of tumour stroma, epidermal microenvironment and different sub-compartments within tumour. These factors play a key role in the transformation of tumour cells from a stable condition to a progressive state. In addition, flexibility in the metabolic state of CSCs helps in disease progression. Moreover, epigenetic changes such as chromatin, DNA methylation could stimulate the phenotypic change of CSCs. Development of resistance to therapy due to highly plastic behaviour of CSCs is a major cause of treatment failure in cancers. However, recent studies explored that plasticity can also expose the weaknesses in CSCs, thereby could be utilized for future therapeutic development. Therefore, in this review, we discuss how cancer cells acquire the plasticity, especially the role of the normal developmental process, tumour microenvironment, and epigenetic changes in the development of plasticity. We further highlight the therapeutic resistance property of CSCs attributed by plasticity. Also, outline some potential therapeutic options against plasticity of CSCs.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2018). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24, 65–78. https://doi.org/10.1016/j.stem.2018.11.011.

    Article  CAS  PubMed  Google Scholar 

  2. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.

    Article  CAS  Google Scholar 

  3. Cabrera, M. C., Hollingsworth, R. E., & Hurt, E. M. (2015). Cancer stem cell plasticity and tumor hierarchy. World Journal of Stem Cells, 7, 27. https://doi.org/10.4252/wjsc.v7.i1.27.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morel, A. P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3, e2888.

    Article  Google Scholar 

  5. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., & Weinberg, R. A. (2008). The epithelial mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715. https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed, F., & Haass, N. K. (2018). Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance. Frontiers in Oncology, 8, 173. https://doi.org/10.3389/fonc.2018.00173.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davies, A. E., & Albeck, J. G. (2018). Microenvironmental signals and biochemical information processing: Cooperative determinants of intratumoral plasticity and heterogeneity. Frontiers in Cell and Developmental Biology, 6, 44. https://doi.org/10.3389/fcell.2018.00044.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Greaves, M. (2015). Evolutionary determinants of cancer. Cancer Discovery, 5(8), 806–820. https://doi.org/10.1158/2159-8290.CD-15-0439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A., & Sottoriva, A. (2016). Identification of neutral tumor evolution across cancer types. Nature Genetics, 48(3), 238–244. https://doi.org/10.1038/ng.3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ahmed, N., Escalona, R., Leung, D., Chan, E., & Kannourakis, G. (2018). Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Seminars in Cancer Biology, 53, 265–281. https://doi.org/10.1016/j.semcancer.2018.10.002.

    Article  CAS  PubMed  Google Scholar 

  11. Wainwright, E. N., & Scaffidi, P. (2017). Epigenetics and Cancer stem cells: Unleashing, hijacking, and restricting cellular plasticity. Trends Cancer, 3(5), 372–386. https://doi.org/10.1016/j.trecan.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Green, S. A., Simoes-Costa, M., & Bronner, M. E. (2015). Evolution of vertebrates as viewed from the crest. Nature, 520(7548), 474–482. https://doi.org/10.1038/nature14436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burrell, R. A., McGranahan, N., Bartek, J., & Swanton, C. (2013). The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 501(7467), 338–345. https://doi.org/10.1038/nature12625.

    Article  CAS  PubMed  Google Scholar 

  14. Ombrato, L., & Malanchi, I. (2014). The EMT universe: Space between cancer cell dissemination and metastasis initiation. Critical Reviews™ in Oncogenesis, 19(5), 349–361.

    Article  Google Scholar 

  15. Brooks, M. D., Burness, M. L., & Wicha, M. S. (2015). Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell, 17(3), 260–271. https://doi.org/10.1016/j.stem.2015.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7(2), 131–142.

    Article  CAS  Google Scholar 

  17. Puisieux, A., Pommier, R. M., Morel, A. P., & Lavial, F. (2018). Cellular pliancy and the multistep process of tumorigenesis. Cancer Cell, 33(2), 164–172.

    Article  CAS  Google Scholar 

  18. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5(9), 744.

    Article  CAS  Google Scholar 

  19. Kalcheim, C. (2016). Epithelial–mesenchymal transitions during neural crest and somite development. Journal of Clinical Medicine, 5(1), 1. https://doi.org/10.3390/jcm5010001.

    Article  Google Scholar 

  20. Latil, M., Nassar, D., Beck, B., Boumahdi, S., Wang, L., Brisebarre, A., … & Drubbel, A. V. (2017). Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell, 20(2), 191–204. https://doi.org/10.1016/j.stem.2016.10.018.

  21. Hemavathy, K., Guru, S. C., Harris, J., Chen, J. D., & Ip, Y. T. (2000). Human Slug is a repressor that localizes to sites of active transcription. Molecular and Cellular Biology, 20(14), 5087–5095.

    Article  CAS  Google Scholar 

  22. Isaac, A., Sargent, M. G., & Cooke, J. (1997). Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science, 275(5304), 1301–1304.

    Article  CAS  Google Scholar 

  23. Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nature Reviews Molecular Cell Biology, 3(3), 155–166.

    Article  CAS  Google Scholar 

  24. Krebs, A. M., Mitschke, J., Losada, M. L., Schmalhofer, O., Boerries, M., Busch, H., et al. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529. https://doi.org/10.1038/ncb3513.

    Article  CAS  PubMed  Google Scholar 

  25. Tata, P. R., Chow, R. D., Saladi, S. V., Tata, A., Konkimalla, A., Bara, A., … & Mou, H. (2018). Developmental history provides a roadmap for the emergence of tumor plasticity. Developmental Cell, 44(6), 679–693. https://doi.org/10.1016/j.devcel.2018.02.024.

  26. Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(Pt 23), 5591–5596. https://doi.org/10.1242/jcs.116392.

    Article  CAS  PubMed  Google Scholar 

  27. Junttila, M. R., & de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501(7467), 346. https://doi.org/10.1038/nature12626.

    Article  CAS  PubMed  Google Scholar 

  28. Vermeulen, L., Felipe De Sousa, E. M., Van Der Heijden, M., Cameron, K., De Jong, J. H., Borovski, T., … Sprick, M. R. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12(5), 468. https://doi.org/10.1038/ncb2048.

  29. Cabrera, M. C., Tilahun, E., Nakles, R., Diaz-Cruz, E. S., Charabaty, A., Suy, S., et al. (2014). Human pancreatic cancer-associated stellate cells remain activated after in vivo chemoradiation. Frontiers in Oncology, 4, 102. https://doi.org/10.3389/fonc.2014.00102.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mantoni, T. S., Lunardi, S., Al-Assar, O., Masamune, A., & Brunner, T. B. (2011). Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling. Cancer Research, 71(10), 3453–3458. https://doi.org/10.1158/0008-5472.CAN-10-1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, D., Wang, D., Yuan, Z., Xue, X., Zhang, Y., An, Y., et al. (2013). Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. International Journal of Cancer, 132(5), 993–1003. https://doi.org/10.1002/ijc.27715.

    Article  CAS  PubMed  Google Scholar 

  32. Hamada, S., Masamune, A., Takikawa, T., Suzuki, N., Kikuta, K., Hirota, M., et al. (2012). Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 421(2), 349–354. https://doi.org/10.1016/j.bbrc.2012.04.014.

    Article  CAS  PubMed  Google Scholar 

  33. Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11(7), 1282–1290. https://doi.org/10.4161/cc.19679.

    Article  CAS  PubMed  Google Scholar 

  34. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022.

    Article  CAS  PubMed  Google Scholar 

  35. Plaks, V., Kong, N., & Werb, Z. (2015). The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16(3), 225–238. https://doi.org/10.1016/j.stem.2015.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yi, S. Y., Hao, Y. B., Nan, K. J., & Fan, T. L. (2013). Cancer stem cells niche: A target for novel cancer therapeutics. Cancer Treatment Reviews, 39(3), 290–296. https://doi.org/10.1074/jbc.R117.799973.

    Article  CAS  PubMed  Google Scholar 

  37. Qian, J., & Rankin, E. B. (2019). Hypoxia-induced phenotypes that mediate tumor heterogeneity. Hypoxia and cancer metastasis (pp. 43–55). Cham: Springer. https://doi.org/10.1007/978-3-030-12734-3_3.

    Book  Google Scholar 

  38. Gentric, G., Mieulet, V., & Mechta-Grigoriou, F. (2017). Heterogeneity in cancer metabolism: New concepts in an old field. Antioxidants & Redox Signaling, 26(9), 462–485. https://doi.org/10.1089/ars.2016.6750.

    Article  CAS  Google Scholar 

  39. McGranahan, N., & Swanton, C. (2017). Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell, 168(4), 613–628. https://doi.org/10.1016/j.cell.2017.01.018.

    Article  CAS  PubMed  Google Scholar 

  40. Tsai, Y. P., & Wu, K. J. (2012). Hypoxia-regulated target genes implicated in tumor metastasis. Journal of Biomedical Science, 19(1), 102. https://doi.org/10.1186/1423-0127-19-102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., … & Hjelmeland, A. B. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513. https://doi.org/10.1016/j.ccr.2009.03.018.

  42. Abyaneh, H. S., Gupta, N., Alshareef, A., Gopal, K., Lavasanifar, A., & Lai, R. (2018). Hypoxia induces the acquisition of cancer stem-like phenotype via upregulation and activation of signal transducer and activator of transcription-3 (STAT3) in MDA-MB-231, a triple negative breast cancer cell line. Cancer Microenvironment, 11(2–3), 141–152. https://doi.org/10.1007/s12307-018-0218-0.

    Article  CAS  Google Scholar 

  43. Choi, H. Y., Yang, G. M., Dayem, A. A., Saha, S. K., Kim, K., Yoo, Y., et al. (2019). Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Research, 21(1), 6. https://doi.org/10.1186/s13058-018-1071-2.

  44. Haass, N. K., Beaumont, K. A., Hill, D. S., Anfosso, A., Mrass, P., Munoz, M. A., et al. (2014). Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell & Melanoma Research, 27(5), 764–776. https://doi.org/10.1111/pcmr.12274.

    Article  CAS  Google Scholar 

  45. Snyder, V., Reed-Newman, T. C., Arnold, L., Thomas, S. M., & Anant, S. (2018). Cancer stem cell metabolism and potential therapeutic targets. Frontiers in Oncology, 8, 203. https://doi.org/10.3389/fonc.2018.00203.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sancho, P., Barneda, D., & Heeschen, C. (2016). Hallmarks of cancer stem cell metabolism. British Journal of Cancer, 114(12), 1305–1312. https://doi.org/10.1038/bjc.2016.152.

  47. Folmes, C. D., Dzeja, P. P., Nelson, T. J., & Terzic, A. (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11(5), 596–606. https://doi.org/10.1016/j.stem.2012.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ciavardelli, D., Rossi, C., Barcaroli, D., Volpe, S., Consalvo, A., Zucchelli, M., et al. (2014). Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death & Disease, 5(7), e1336. https://doi.org/10.1038/cddis.2014.285.

    Article  CAS  Google Scholar 

  49. Liao, J., Qian, F., Tchabo, N., Mhawech-Fauceglia, P., Beck, A., Qian, Z., … & Odunsi, K. (2014). Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One, 9(1), e84941. https://doi.org/10.1371/journal.pone.0084941.

  50. Palorini, R., Votta, G., Balestrieri, C., Monestiroli, A., Olivieri, S., Vento, R., & Chiaradonna, F. (2014). Energy metabolism characterization of a novel cancer stem cell-like line 3 AB-OS. Journal of Cellular Biochemistry, 115(2), 368–379. https://doi.org/10.1002/jcb.24671.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, Y., Zhou, Y., Shingu, T., Feng, L., Chen, Z., Ogasawara, M., et al. (2011). Metabolic alterations in highly tumorigenic glioblastoma cells preference for hypoxia and high dependency on glycolysis. Journal of Biological Chemistry, 286(37), 32843–32853. https://doi.org/10.1074/jbc.M111.260935.

    Article  CAS  PubMed  Google Scholar 

  52. Chen, K. Y., Liu, X., Bu, P., Lin, C. S., Rakhilin, N., Locasale, J. W., & Shen, X. (2014, August). A metabolic signature of colon cancer initiating cells. In 2014 36th annual international conference of the IEEE Engineering in Medicine and Biology Society (pp. 4759–4762). IEEE. https://doi.org/10.1109/EMBC.2014.6944688

  53. Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., et al. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology-Cell Physiology, 292(1), C125–C136.

    Article  CAS  Google Scholar 

  54. Liu, P. P., Liao, J., Tang, Z. J., Wu, W. J., Yang, J., Zeng, Z. L., ... & Huang, P. (2014). Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death and Differentiation, 21(1), 124. doi: https://doi.org/10.1038/cdd.2013.131.

  55. Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Research, 65(1), 177–185.

    CAS  PubMed  Google Scholar 

  56. Demaria, M., Giorgi, C., Lebiedzinska, M., Esposito, G., D’Angeli, L., Bartoli, A., … Wieckowski, M. R. (2010). A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging (Albany NY), 2(11), 823.

  57. Chan, E., Luwor, R., Burns, C., Kannourakis, G., Findlay, J. K., & Ahmed, N. (2018). Momelotinib decreased cancer stem cell associated tumor burden and prolonged disease-free remission period in a mouse model of human ovarian cancer. Oncotarget, 9(24), 16599–16618. https://doi.org/10.18632/oncotarget.24615.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vlashi, E., Lagadec, C., Vergnes, L., Matsutani, T., Masui, K., Poulou, M., … Reue, K. (2011). Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences, 108(38), 16062–16067.https://doi.org/10.1073/pnas.1106704108.

  59. Janiszewska, M., Suvà, M. L., Riggi, N., Houtkooper, R. H., Auwerx, J., Clément-Schatlo, V., et al. (2012). Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes & Development, 26(17), 1926–1944. https://doi.org/10.1101/gad.188292.112.

    Article  CAS  Google Scholar 

  60. Sancho, P., Burgos-Ramos, E., Tavera, A., Kheir, T. B., Jagust, P., Schoenhals, M., … Viera, C. R. (2015). MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabolism, 22(4), 590–605. https://doi.org/10.1016/j.cmet.2015.08.015.

  61. De Francesco, E. M., Sotgia, F., & Lisanti, M. P. (2018). Cancer stem cells (CSCs): Metabolic strategies for their identification and eradication. Biochemical Journal, 475(9), 1611–1634. https://doi.org/10.1042/BCJ20170164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, D., Wang, Y., Shi, Z., Liu, J., Sun, P., Hou, X., ..., & Mi, J. (2015). Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Reports, 10(8), 1335–1348. https://doi.org/10.1016/j.celrep.2015.02.006.

  63. Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129(3), 465–472.

    Article  CAS  Google Scholar 

  64. Bhowmik, S. K., Ramirez-Peña, E., Arnold, J. M., Putluri, V., Sphyris, N., Michailidis, G., … Mani, S. A. (2015). EMT-induced metabolite signature identifies poor clinical outcome. Oncotarget, 6(40), 42651. https://doi.org/10.18632/oncotarget.4765.

  65. Aguilar, E., Marin de Mas, I., Zodda, E., Marin, S., Morrish, F., Selivanov, V., ..., & Celià-Terrassa, T. (2016). Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program. Stem Cells, 34(5), 1163–1176.doi: https://doi.org/10.1002/stem.2286.

  66. Chen, E. I., Hewel, J., Krueger, J. S., Tiraby, C., Weber, M. R., Kralli, A., ... & Felding-Habermann, B. (2007). Adaptation of energy metabolism in breast cancer brain metastases. Cancer Research, 67(4), 1472–1486.

  67. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14(9), 611. https://doi.org/10.1038/nrc3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chaffer, C. L., Marjanovic, N. D., Lee, T., Bell, G., Kleer, C. G., Reinhardt, F., … Weinberg, R. A. (2013). Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 154(1), 61–74. https://doi.org/10.1016/j.cell.2013.06.005.

  69. Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., & Morrison, S. J. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593. https://doi.org/10.1038/nature07567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A.,… Herlyn, M. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594. https://doi.org/10.1016/j.cell.2010.04.020.

  71. Cancer Genome Atlas Research Network. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. New England Journal of Medicine, 368(22), 2059–2074. https://doi.org/10.1056/NEJMoa1301689.

    Article  CAS  Google Scholar 

  72. Kim, M. S., Kim, Y. R., Yoo, N. J., & Lee, S. H. (2013). Mutational analysis of DNMT3A gene in acute leukemias and common solid cancers. APMIS, 121(2), 85–94. https://doi.org/10.1111/j.1600-0463.2012.02940.

    Article  CAS  PubMed  Google Scholar 

  73. Cohen, A. L., Holmen, S. L., & Colman, H. (2013). IDH1 and IDH2 mutations in gliomas. Current Neurology and Neuroscience Reports, 13(5), 345. https://doi.org/10.1007/s11910-013-0345-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arienti, C., Zanoni, M., Pignatta, S., Del Rio, A., Carloni, S., Tebaldi, M., … Tesei, A. (2016). Preclinical evidence of multiple mechanisms underlying trastuzumab resistance in gastric cancer. Oncotarget, 7(14), 18424. https://doi.org/10.18632/oncotarget.7575.

  75. Chang, A. (2011). Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer, 71(1), 3–10. https://doi.org/10.1016/j.lungcan.2010.08.022.

    Article  PubMed  Google Scholar 

  76. Haslehurst, A. M., Koti, M., Dharsee, M., Nuin, P., Evans, K., Geraci, J., … & Davey, S. (2012). EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer, 12(1), 91. https://doi.org/10.1186/1471-2407-12-91.

  77. Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., & Lander, E. S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659. https://doi.org/10.1016/j.cell.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abdullah, L. N., & Chow, E. K. H. (2013). Mechanisms of chemoresistance in cancer stem cells. Clinical and Translational Medicine, 2(1), 3. https://doi.org/10.1186/2001-1326-2-3.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang, P., Wei, Y., Wang, L., Debeb, B. G., Yuan, Y., Zhang, J., ... & Woodward, W. A. (2014). ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nature Cell Biology, 16(9), 864–875. https://doi.org/10.1038/ncb3013.

  80. Creighton, C. J., Li, X., Landis, M., Dixon, J. M., Neumeister, V. M., Sjolund, A., … & Fan, C. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of the National Academy of Sciences, 106(33), 13820–13825. https://doi.org/10.1073/pnas.0905718106.

  81. Auffinger, B., Tobias, A. L., Han, Y., Lee, G., Guo, D., Dey, M., … & Ahmed, A. U. (2014). Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death and Differentiation, 21(7), 1119. https://doi.org/10.1038/cdd.2014.31.

  82. Kurrey, N. K., Jalgaonkar, S. P., Joglekar, A. V., Ghanate, A. D., Chaskar, P. D., Doiphode, R. Y., & Bapat, S. A. (2009). Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells, 27(9), 2059–2068. https://doi.org/10.1002/stem.154.

    Article  CAS  PubMed  Google Scholar 

  83. Del Vecchio, C. A., Feng, Y., Sokol, E. S., Tillman, E. J., Sanduja, S., Reinhardt, F., & Gupta, P. B. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biology, 12(9), e1001945. https://doi.org/10.1371/journal.pbio.1001945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Watson, P. A., Arora, V. K., & Sawyers, C. L. (2015). Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nature Reviews Cancer, 15(12), 701. https://doi.org/10.1038/nrc4016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Davies, A. H., Beltran, H., & Zoubeidi, A. (2018). Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nature Reviews Urology, 15(5), 271. https://doi.org/10.1038/nrurol.2018.22.

    Article  CAS  PubMed  Google Scholar 

  86. Yamada, D., Kobayashi, S., Wada, H., Kawamoto, K., Marubashi, S., Eguchi, H., … Mori, M. (2013). Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial–mesenchymal transition and chemoresistance in biliary tract cancer. European Journal of Cancer, 49(7), 1725–1740.

  87. Boelens, M. C., Wu, T. J., Nabet, B. Y., Xu, B., Qiu, Y., Yoon, T., ... & Ter Brugge, P. J. (2014). Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell, 159(3), 499–513. https://doi.org/10.1016/j.cell.2014.09.051.

  88. Yu, Y., Xiao, C. H., Tan, L. D., Wang, Q. S., Li, X. Q., & Feng, Y. M. (2014). Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. British Journal of Cancer, 110(3), 724–732. https://doi.org/10.1038/bjc.2013.768.

    Article  CAS  PubMed  Google Scholar 

  89. Joseph, J. P., Harishankar, M. K., Pillai, A. A., & Devi, A. (2018). Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncology, 80, 23–32. https://doi.org/10.1016/j.oraloncology.2018.03.004.

    Article  CAS  PubMed  Google Scholar 

  90. Smigiel, J., Parameswaran, N., & Jackson, M. (2018). Targeting pancreatic cancer cell plasticity: The latest in therapeutics. Cancers, 10(1), 14. https://doi.org/10.3390/cancers10010014.

    Article  CAS  PubMed Central  Google Scholar 

  91. Nieto, M. A., Huang, R. Y. J., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45. https://doi.org/10.1016/j.cell.2016.06.028.

    Article  CAS  PubMed  Google Scholar 

  92. Kaur, G., Sharma, P., Dogra, N., & Singh, S. (2018). Eradicating cancer stem cells: Concepts, issues, and challenges. Current Treatment Options in Oncology, 19(4), 20. https://doi.org/10.1007/s11864-018-0533-1.

    Article  PubMed  Google Scholar 

  93. Cai, Z., Cao, Y., Luo, Y., Hu, H., & Ling, H. (2018). Signalling mechanism (s) of epithelial–mesenchymal transition and cancer stem cells in tumour therapeutic resistance. Clinica Chimica Acta, 483, 156–163. https://doi.org/10.1016/j.cca.2018.04.033.

    Article  CAS  Google Scholar 

  94. Smith, A. L., Robin, T. P., & Ford, H. L. (2012). Molecular pathways: Targeting the TGF-β pathway for cancer therapy. Clinical Cancer Research, 18(17), 4514–4521. https://doi.org/10.1158/1078-0432.CCR-11-3224.

    Article  CAS  PubMed  Google Scholar 

  95. Santamaria, P. G., Moreno-Bueno, G., Portillo, F., & Cano, A. (2017). EMT: Present and future in clinical oncology. Molecular Oncology, 11(7), 718–738. https://doi.org/10.1002/1878-0261.12091.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cazet, A. S., Hui, M. N., Elsworth, B. L., Wu, S. Z., Roden, D., Chan, C. L., ... & Johan, M. Z. (2018). Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nature Communications, 9(1), 2897. https://doi.org/10.1038/s41467-018-05220-6.

  97. Annibaldi, A., & Widmann, C. (2010). Glucose metabolism in cancer cells. Current Opinion in Clinical Nutrition & Metabolic Care, 13(4), 466–470. https://doi.org/10.1097/MCO.0b013e32833a5577.

    Article  CAS  Google Scholar 

  98. Krasnov, G. S., Dmitriev, A. A., Snezhkina, A. V., & Kudryavtseva, A. V. (2013). Deregulation of glycolysis in cancer: Glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opinion on Therapeutic Targets, 17(6), 681–693. https://doi.org/10.1517/14728222.2013.775253.

    Article  CAS  PubMed  Google Scholar 

  99. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., ... & Gurtner, G. C. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858.

  100. Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell, 23(6), 811–825. https://doi.org/10.1016/j.ccr.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  101. Lamb, R., Ozsvari, B., Lisanti, C. L., Tanowitz, H. B., Howell, A., Martinez-Outschoorn, U. E., ... & Lisanti, M. P. (2015). Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget, 6(7), 4569–4584.

  102. Lamb, R., Harrison, H., Hulit, J., Smith, D. L., Lisanti, M. P., & Sotgia, F. (2014). Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 5(22), 11029–11037.

    Article  Google Scholar 

  103. An, H., Kim, J. Y., Oh, E., Lee, N., Cho, Y., & Seo, J. H. (2015). Salinomycin promotes anoikis and decreases the CD44+/CD24-stem-like population via inhibition of STAT3 activation in MDA-MB-231 cells. PLoS One, 10(11), e0141919. https://doi.org/10.1371/journal.pone.0141919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chu, D. J., Yao, D. E., Zhuang, Y. F., Hong, Y., Zhu, X. C., Fang, Z. R., ... & Yu, Z. Y. (2014). Azithromycin enhances the favorable results of paclitaxel and cisplatin in patients with advanced non-small cell lung cancer. Genetics and Molecular Research, 13(2), 2796–2805. https://doi.org/10.4238/2014.

  105. Mayer, M. J., Klotz, L. H., & Venkateswaran, V. (2015). Metformin and prostate cancer stem cells: A novel therapeutic target. Prostate Cancer and Prostatic Diseases, 18(4), 303. https://doi.org/10.1038/pcan.2015.35.

    Article  CAS  PubMed  Google Scholar 

  106. Jung, J. W., Park, S. B., Lee, S. J., Seo, M. S., Trosko, J. E., & Kang, K. S. (2011). Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression. PLoS One, 6(11), e28068. https://doi.org/10.1371/journal.pone.0028068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vazquez-Martin, A., Oliveras-Ferraros, C., Cufí, S., Del Barco, S., Martin-Castillo, B., & Menendez, J. A. (2010). Metformin regulates breast cancer stem cello ntogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status. Cell Cycle, 9(18), 3831–3838.

    Article  Google Scholar 

  108. Semenza, G. L. (2012). Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33(4), 207–214. https://doi.org/10.1016/j.tips.2012.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma, W. W., & Adjei, A. A. (2009). Novel agents on the horizon for cancer therapy. CA: A Cancer Journal for Clinicians, 59(2), 111–137. https://doi.org/10.3322/caac.20003.

    Article  Google Scholar 

  110. Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.

    Article  Google Scholar 

  111. Lee, E. J., Chung, T. W., Lee, J. H., Kim, B. S., Kim, E. Y., Lee, S. O., & Ha, K. T. (2018). Water-extracted branch of Cinnamomum cassia promotes lung cancer cell apoptosis by inhibiting pyruvate dehydrogenase kinase activity. Journal of Pharmacological Sciences, 138(2), 146–154. https://doi.org/10.1016/j.jphs.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  112. Liu, H., Lv, L., & Yang, K. (2015). Chemotherapy targeting cancer stem cells. American Journal of Cancer Research, 5(3), 880–893.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Biddle, A., Gammon, L., Liang, X., Costea, D. E., & Mackenzie, I. C. (2016). Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. EBioMedicine, 4, 138–145. https://doi.org/10.1016/j.ebiom.2016.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pinski, J., Parikh, A., Bova, G. S., & Isaacs, J. T. (2001). Therapeutic implications of enhanced G0/G1 checkpoint control induced by coculture of prostate cancer cells with osteoblasts. Cancer Research, 61(17), 6372–6376.

    CAS  PubMed  Google Scholar 

  115. Mahalingam, D., Wilding, G., Denmeade, S., Sarantopoulas, J., Cosgrove, D., Cetnar, J., … Carducci, M. (2016). Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: Results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. British Journal of Cancer, 114(9), 986.

  116. Munster, P. N., Troso-Sandoval, T., Rosen, N., Rifkind, R., Marks, P. A., & Richon, V. M. (2001). The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Research, 61(23), 8492–8497.

    CAS  PubMed  Google Scholar 

  117. Salvador, M. A., Wicinski, J., Cabaud, O., Toiron, Y., Finetti, P., Josselin, E., … Collette, Y. (2013). The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clinical Cancer Research, 19(23), 6520–6531. https://doi.org/10.1158/1078-0432.CCR-13-0877.

  118. Olmeda, D., Moreno-Bueno, G., Flores, J. M., Fabra, A., Portillo, F., & Cano, A. (2007). SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Research, 67(24), 11721–11731.

    Article  CAS  Google Scholar 

  119. Bedogni, B. (2014). Notch signaling in melanoma: Interacting pathways and stromal influences that enhance notch targeting. Pigment Cell & Melanoma Research, 27(2), 162–168. https://doi.org/10.1111/pcmr.12194.

    Article  CAS  Google Scholar 

  120. Feng, Y. X., Sokol, E. S., Del Vecchio, C. A., Sanduja, S., Claessen, J. H., Proia, T. A., ... & Gupta, P. B. (2014). Epithelial-to-mesenchymal transition activates PERK–eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discovery, 4(6), 702–715. https://doi.org/10.1158/2159-8290.CD-13-0945.

  121. Shen, Y. A., Wang, C. Y., Hsieh, Y. T., Chen, Y. J., & Wei, Y. H. (2015). Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle, 14(1), 86–98. https://doi.org/10.4161/15384101.2014.974419.

    Article  PubMed  Google Scholar 

  122. Chae, Y. C., & Kim, J. H. (2018). Cancer stem cell metabolism: Target for cancer therapy. BMB Reports, 51(7), 319.

    Article  CAS  Google Scholar 

  123. Junk, D. J., Bryson, B. L., Smigiel, J. M., Parameswaran, N., Bartel, C. A., & Jackson, M. W. (2017). Oncostatin M promotes cancer cell plasticity through cooperative STAT3-SMAD3 signaling. Oncogene, 36(28), 4001. https://doi.org/10.1038/onc.2017.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen, X., Hu, L., Yang, H., Ma, H., Ye, K., Zhao, C., … & Fang, Z. (2019). DHHC protein family targets different subsets of glioma stem cells in specific niches. Journal of Experimental & Clinical Cancer Research, 38(1), 25. https://doi.org/10.1186/s13046-019-1033-2.

  125. Joseph, D., Gonsky, J. P., & Blain, S. W. (2018). Macrophage Inhibitory Factor-1 (MIF-1) controls the plasticity of multiple myeloma tumor cells. PLoS One, 13(11), e0206368. https://doi.org/10.1371/journal.pone.0206368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bordji, K., Grandval, A., Cuhna-Alves, L., Lechapt-Zalcman, E., & Bernaudin, M. (2014). Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells. The FEBS Journal, 281(23), 5220–5236.

    Article  CAS  Google Scholar 

  127. Nishino, H., Takano, S., Yoshitomi, H., Suzuki, K., Kagawa, S., Shimazaki, R., … & Ohtsuka, M. (2017). Grainyhead-like 2 (GRHL 2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Medicine, 6(11), 2686–2696. https://doi.org/10.1002/cam4.1212.

  128. Murgai, M., Ju, W., Eason, M., Kline, J., Beury, D. W., Kaczanowska, S., … & Cherepanova, O. A. (2017). KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nature Medicine, 23(10), 1176. https://doi.org/10.1038/nm.4400.

  129. Kosty, J., Lu, F., Kupp, R., Mehta, S., & Lu, Q. R. (2017). Harnessing OLIG2 function in tumorigenicity and plasticity to target malignant gliomas. Cell Cycle, 16(18), 1654–1660. https://doi.org/10.1080/15384101.2017.1361062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. O’Brien-Ball, C., & Biddle, A. (2017). Reprogramming to developmental plasticity in cancer stem cells. Developmental Biology, 430(2), 266–274. https://doi.org/10.1016/j.ydbio.2017.07.025.

    Article  CAS  PubMed  Google Scholar 

  131. Soundararajan, R., Paranjape, A. N., Maity, S., Aparicio, A., & Mani, S. A. (2018). EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1870(2), 229–238. https://doi.org/10.1016/j.bbcan.2018.06.006.

    Article  CAS  Google Scholar 

  132. Poli, V., Fagnocchi, L., & Zippo, A. (2018). Tumorigenic cell reprogramming and cancer plasticity: Interplay between signaling, microenvironment, and epigenetics. Stem Cells International, 2018, 4598195. https://doi.org/10.1155/2018/4598195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Padua, M. B., Bhat-Nakshatri, P., Anjanappa, M., Prasad, M. S., Hao, Y., Rao, X., et al. (2018). Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast Cancer Research, 20(1), 35. https://doi.org/10.1186/s13058-018-0963-5.

    Article  CAS  PubMed  Google Scholar 

  134. Francis, J. C., Capper, A., Ning, J., Knight, E., de Bono, J., & Swain, A. (2018). SOX9 is a driver of aggressive prostate cancer by promoting invasion, cell fate and cytoskeleton alterations and epithelial to mesenchymal transition. Oncotarget, 9(7), 7604. https://doi.org/10.18632/oncotarget.24123.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Caragher, S. P., Shireman, J. M., Huang, M., Miska, J., Atashi, F., Baisiwala, S., et al. (2019). Activation of dopamine receptor 2 prompts transcriptomic and metabolic plasticity in glioblastoma. Journal of Neuroscience, 39(11), 1982–1993. https://doi.org/10.1523/JNEUROSCI.1589-18.2018.

    Article  CAS  PubMed  Google Scholar 

  136. Molyneux, G., Geyer, F. C., Magnay, F. A., McCarthy, A., Kendrick, H., Natrajan, R., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–417. https://doi.org/10.1016/j.stem.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  137. Van Keymeulen, A., Rocha, A. S., Ousset, M., Beck, B., Bouvencourt, G., Rock, J., … Blanpain, C. (2011). Distinct stem cells contribute to mammary gland development and maintenance. Nature, 479(7372), 189. https://doi.org/10.1038/nature10573.

  138. Bedogni, B., Warneke, J. A., Nickoloff, B. J., Giaccia, A. J., & Powell, M. B. (2008). Notch1 is an effector of Akt and hypoxia in melanoma development. The Journal of Clinical Investigation, 118(11), 3660–3670. https://doi.org/10.1172/JCI36157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., … Brunton, V. G. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487. https://doi.org/10.1038/ncb1998.

  140. Glackin, C. A. (2018). Nanoparticle delivery of TWIST small interfering RNA and anticancer drugs: A therapeutic approach for combating cancer. The Enzymes, 44, 83–101.

    Article  Google Scholar 

  141. Beck, B., Lapouge, G., Rorive, S., Drogat, B., Desaedelaere, K., Delafaille, S., … Blanpain, C. (2015). Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell, 16(1), 67–79. https://doi.org/10.1016/j.stem.2014.12.002.

  142. Sokol, E. S., Feng, Y. X., Jin, D. X., Tizabi, M. D., Miller, D. H., Cohen, M. A., ... & Jaenisch, R. (2017). SMARCE1 is required for the invasive progression of in situ cancers. Proceedings of the National Academy of Sciences, 114(16), 4153–4158. https://doi.org/10.1073/pnas.1703931114.

  143. Tang, B., Qi, G., Tang, F., Yuan, S., Wang, Z., Liang, X., et al. (2016). Aberrant JMJD3 expression upregulates slug to promote migration, invasion, and stem cell–like behaviors in hepatocellular carcinoma. Cancer Research, 76(22), 6520–6532. https://doi.org/10.1158/0008-5472.CAN-15-3029.

    Article  CAS  PubMed  Google Scholar 

  144. Samanta, S., Sun, H., Goel, H. L., Pursell, B., Chang, C., Khan, A., et al. (2016). IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene, 35(9), 1111. https://doi.org/10.1038/onc.2015.164.

    Article  CAS  PubMed  Google Scholar 

  145. Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., et al. (2011). The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell, 147(4), 759–772. https://doi.org/10.1016/j.cell.2011.09.048.

    Article  CAS  PubMed  Google Scholar 

  146. Breindel, J. L., Skibinski, A., Sedic, M., Wronski-Campos, A., Zhou, W., Keller, P. J., et al. (2017). Epigenetic reprogramming of lineage-committed human mammary epithelial cells requires DNMT3A and loss of DOT1L. Stem Cell Reports, 9(3), 943–955. https://doi.org/10.1016/j.stemcr.2017.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gao, J. P., Xu, W., Liu, W. T., Yan, M., & Zhu, Z. G. (2018). Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell. World Journal of Gastroenterology, 24(24), 2567. https://doi.org/10.3748/wjg.v24.i24.2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wong, A. L., Hirpara, J. L., Pervaiz, S., Eu, J. Q., Sethi, G., & Goh, B. C. (2017). Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opinion Investigation Drugs, 26(8), 883–887. https://doi.org/10.1080/13543784.2017.1351941.

    Article  CAS  Google Scholar 

  149. Dittmer, J., & Rody, A. (2013). Cancer stem cells in breast cancer. Histology & Histopathology, 28(7), 827–838. https://doi.org/10.14670/HH-28.827.

    Article  CAS  Google Scholar 

  150. Tuynder, M., Susini, L., Prieur, S., Besse, S., Fiucci, G., Amson, R., & Telerman, A. (2002). Biological models and genes of tumor reversion: Cellular reprogramming through tpt1/TCTP and SIAH-1. Proceedings of the National Academy of Sciences, 99(23), 14976–14981.

    Article  CAS  Google Scholar 

  151. Tuynder, M., Fiucci, G., Prieur, S., Lespagnol, A., Géant, A., Beaucourt, S., … Moras, D. (2004). Translationally controlled tumor protein is a target of tumor reversion. Proceedings of the National Academy of Sciences, 101(43), 15364–15369.

  152. Suzuki, K., Takano, S., Yoshitomi, H., Nishino, H., Kagawa, S., Shimizu, H., … & Ohtsuka, M. (2017). Metadherin promotes metastasis by supporting putative cancer stem cell properties and epithelial plasticity in pancreatic cancer. Oncotarget, 8(39), 66098–66111. https://doi.org/10.18632/oncotarget.19802.

  153. Rausch, V., Liu, L., Kallifatidis, G., Baumann, B., Mattern, J., Gladkich, J., et al. (2010). Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Research, 70(12), 5004–5013. https://doi.org/10.1158/0008-5472.CAN-10-0066.

    Article  CAS  PubMed  Google Scholar 

  154. Suzuki, S., Okada, M., Shibuya, K., Seino, M., Sato, A., Takeda, H., … Kitanaka, C. (2015). JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget, 6(1), 458.

  155. Bao, B., Azmi, A. S., Ali, S., Zaiem, F., & Sarkar, F. H. (2014). Metformin may function as anti-cancer agent via targeting cancer stem cells: The potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. Annals of Translational Medicine, 2(6), 59. https://doi.org/10.3978/j.issn.2305-5839.2014.06.05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The projects was supported by the new staff start-up funding, Faculty of Medicine, The University of Queensland, Queensland, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suja Pillai or Farhadul Islam.

Ethics declarations

Conflict of Interest

Authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P.K., Pillai, S., Rakib, M.A. et al. Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance. Stem Cell Rev and Rep 16, 397–412 (2020). https://doi.org/10.1007/s12015-019-09942-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09942-y

Keywords

Navigation