Skip to main content

Advertisement

Log in

Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashkenazi, S., Plotnikov, A., Bahat, A., Ben-Zeev, E., Warszawski, S., & Dikstein, R. (2016). A novel allosteric mechanism of NF-κB dimerization and DNA binding targeted by an anti-inflammatory drug. Molecular and Cellular Biology, 36(8), 1237–1247.

    Article  PubMed  Google Scholar 

  • Brandenburg, L. O., Kipp, M., Lucius, R., Pufe, T., & Wruck, C. J. (2010). Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflammation Research, 59(6), 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J., & Mattson, M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants and Redox Signaling, 13(11), 1763–1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., & Trapp, B. D. (2016). Microglia and neuroprotection. Journal of Neurochemistry, 136(Suppl 1), 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. C., Ho, F. M., Pei-Dawn Lee, C., Chen, C. P., Jeng, K. C., Hsu, H. B., et al. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. European Journal of Pharmacology, 521(1–3), 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, D. Y., Chan, M. H., Zong, Y., Sheng, W., He, Y., Jiang, J. H., et al. (2013). Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of Neuroinflammation, 10, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang, D. Y., Simonyi, A., Kotzbauer, P. T., Gu, Z., & Sun, G. Y. (2015). Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Journal of Neuroinflammation, 12, 199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dar, N. J., Hamid, A., & Ahmad, M. (2015). Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cellular and Molecular Life Sciences, 72(23), 4445–4460.

    Article  CAS  PubMed  Google Scholar 

  • Durg, S., Dhadde, S. B., Vandal, R., Shivakumar, B. S., & Charan, C. S. (2015). Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. Journal of Pharmacy and Pharmacology, 67(7), 879–899.

    Article  CAS  PubMed  Google Scholar 

  • Foresti, R., Bains, S. K., Pitchumony, T. S., de Castro Bras, L. E., Drago, F., Dubois-Rande, J. L., et al. (2013). Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacological Research, 76, 132–148.

    Article  CAS  PubMed  Google Scholar 

  • Gan, L., & Johnson, J. A. (2014). Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochimica et Biophysica Acta, 1842(8), 1208–1218.

    Article  CAS  PubMed  Google Scholar 

  • Gao, B., Doan, A., & Hybertson, B. M. (2014). The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol, 6, 19–34.

    PubMed  PubMed Central  Google Scholar 

  • Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H., et al. (2012). Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One, 7(6), e39065.

    Article  CAS  PubMed  Google Scholar 

  • Grunz-Borgmann, E., Mossine, V., Fritsche, K., & Parrish, A. R. (2015). Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells. BMC Complementary and Alternative Medicine, 15, 434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Innamorato, N. G., Rojo, A. I., Garcia-Yague, A. J., Yamamoto, M., de Ceballos, M. L., & Cuadrado, A. (2008). The transcription factor Nrf2 is a therapeutic target against brain inflammation. Journal of Immunology, 181(1), 680–689.

    Article  CAS  Google Scholar 

  • Jazwa, A., & Cuadrado, A. (2010). Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Current Drug Targets, 11(12), 1517–1531.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Chuang, D. Y., Zong, Y., Patel, J., Brownstein, K., Lei, W., et al. (2014). Sutherlandia frutescens ethanol extracts inhibit oxidative stress and inflammatory responses in neurons and microglial cells. PLoS One, 9(2), e89748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi, G., & Johnson, J. A. (2012). The Nrf2-ARE pathway: A valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents on CNS Drug Discovery, 7(3), 218–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J., & Kim, G. Y. (2013). Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. International Immunopharmacology, 17(3), 808–813.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, A., Kang, M. I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., et al. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology, 24(16), 7130–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuboyama, T., Tohda, C., & Komatsu, K. (2014). Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biological and Pharmaceutical Bulletin, 37(6), 892–897.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, S. K., & Dhir, A. (2008). Withania somnifera: An Indian ginseng. Progress in Neuropsychopharmacology and Biological Psychiatry, 32(5), 1093–1105.

    Article  CAS  Google Scholar 

  • Kurapati, K. R., Atluri, V. S., Samikkannu, T., & Nair, M. P. (2013). Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One, 8(10), e77624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurapati, K. R., Atluri, V. S., Samikkannu, T., Garcia, G., & Nair, M. P. (2015). Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): A brief overview. Frontiers in Microbiology, 6, 1444.

    PubMed  Google Scholar 

  • Lee, J., Jo, D. G., Park, D., Chung, H. Y., & Mattson, M. P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacological Reviews, 66(3), 815–868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Min, K. J., Choi, K., & Kwon, T. K. (2011). Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. International Immunopharmacology, 11(8), 1137–1142.

    Article  CAS  PubMed  Google Scholar 

  • Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazon, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393.

    Article  CAS  PubMed  Google Scholar 

  • Nair, S., Doh, S. T., Chan, J. Y., Kong, A. N., & Cai, L. (2008). Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. British Journal of Cancer, 99(12), 2070–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan, M., Seeley, K. W., & Jinwal, U. K. (2015). Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach. Journal of Ethnopharmacology, 175, 86–92.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J. H., Lee, T. J., Park, J. W., & Kwon, T. K. (2008). Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-κB in RAW 264.7 cells. European Journal of Pharmacology, 599(1–3), 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Paine, A., Eiz-Vesper, B., Blasczyk, R., & Immenschuh, S. (2010). Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochemical Pharmacology, 80(12), 1895–1903.

    Article  CAS  PubMed  Google Scholar 

  • Parada, E., Buendia, I., Navarro, E., Avendano, C., Egea, J., & Lopez, M. G. (2015). Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Molecular Nutrition and Food Research, 59(9), 1690–1700.

    Article  CAS  PubMed  Google Scholar 

  • Patil, D., Gautam, M., Mishra, S., Karupothula, S., Gairola, S., Jadhav, S., et al. (2013). Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: Application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. Journal of Pharmaceutical and Biomedical Analysis, 80, 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Queiroga, C. S., Vercelli, A., & Vieira, H. L. (2015). Carbon monoxide and the CNS: Challenges and achievements. British Journal of Pharmacology, 172(6), 1533–1545.

    Article  CAS  PubMed  Google Scholar 

  • Salter, M. W., & Beggs, S. (2014). Sublime microglia: Expanding roles for the guardians of the CNS. Cell, 158(1), 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, M., Patil, J., D’Angelo, B., Weber, S. G., & Mallard, C. (2014). NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology, 79, 298–306.

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini, G., Vasto, S., Abraham, N. G., Caruso, C., Zella, D., & Fabio, G. (2011). Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Molecular Neurobiology, 44(2), 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Shah, N., Singh, R., Sarangi, U., Saxena, N., Chaudhary, A., Kaur, G., et al. (2015). Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One, 10(3), e0120554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng, W., Zong, Y., Mohammad, A., Ajit, D., Cui, J., Han, D., et al. (2011). Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 8, 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonyi, A., Chen, Z., Jiang, J., Zong, Y., Chuang, D. Y., Gu, Z., et al. (2015). Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sciences, 128, 30–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, N., Bhalla, M., de Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5 Suppl), 208–213.

    Google Scholar 

  • Soares, M. P., Marguti, I., Cunha, A., & Larsen, R. (2009). Immunoregulatory effects of HO-1: How does it work? Current Opinion in Pharmacology, 9(4), 482–489.

    Article  CAS  PubMed  Google Scholar 

  • Sun, A. Y., Wang, Q., Simonyi, A., & Sun, G. Y. (2008). Botanical phenolics and brain health. Neuromolecular Medicine, 10(4), 259–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., et al. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: Role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One, 10(10), e0141509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Syapin, P. J. (2008). Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. British Journal of Pharmacology, 155(5), 623–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terazawa, R., Akimoto, N., Kato, T., Itoh, T., Fujita, Y., Hamada, N., et al. (2013). A kavalactone derivative inhibits lipopolysaccharide-stimulated iNOS induction and NO production through activation of Nrf2 signaling in BV2 microglial cells. Pharmacological Research, 71, 34–43.

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe, W., Sabbe, L., Kaileh, M., Haegeman, G., & Heyninck, K. (2012). Molecular insight in the multifunctional activities of Withaferin A. Biochemical Pharmacology, 84(10), 1282–1291.

    Article  CAS  PubMed  Google Scholar 

  • Ven Murthy, M. R., Ranjekar, P. K., Ramassamy, C., & Deshpande, M. (2010). Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: Ashwagandha. Central Nervous System Agents in Medicinal Chemistry, 10(3), 238–246.

    Article  CAS  PubMed  Google Scholar 

  • Vyas, A. R., & Singh, S. V. (2014). Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS Journal, 16(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa, R., Konar, A., & Kaul, S. C. (2016). Nootropic potential of ashwagandha leaves: Beyond traditional root extracts. Neurochemistry International, 95, 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions, 43(4), 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J., & Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 24(24), 10941–10953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grant P50AT006273 from the National Center for Complementary and Alternative Medicine (NCCAM), the Office of Dietary Supplements (ODS), and the National Cancer Institute (NCI). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NCCAM, ODS, NCI, or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Y. Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G.Y., Li, R., Cui, J. et al. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells. Neuromol Med 18, 241–252 (2016). https://doi.org/10.1007/s12017-016-8411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8411-0

Keywords

Navigation