Skip to main content

Advertisement

Log in

The Role of PTHrP in Pancreatic Beta-Cells and Implications for Diabetes Pathophysiology and Treatment

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Diabetes is one of the fastest growing diseases worldwide, with an immense economic and health burden attached. It is now well accepted that a deficiency of functional insulin-producing pancreatic beta-cells is the main cause for all forms of diabetes. Several approaches are being taken to increase functional beta-cell mass. These include differentiation of new beta-cells from stem cells or progenitor cells, transdifferentiation of beta-cells from other mature cell types, as well as finding ways to enhance the function, proliferation, survival, and regeneration of preexisting beta-cells. This article enumerates on the role of parathyroid hormone-related protein (PTHrP) and its mode of action on pancreatic beta-cell function, proliferation, and survival in rodents as well as in human beta-cells. A further understanding of the mechanism of action of PTHrP and its role in the normal physiology and pathophysiology of the beta-cell will be important for its potential use in future as a therapeutic treatment for diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.

    Article  CAS  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention. Diabetes Report Card 2012. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2012.

  4. Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:293–301.

    Article  PubMed  Google Scholar 

  5. Atkinson M, Maclaren N. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med. 1994;331:1428–36.

    Article  CAS  PubMed  Google Scholar 

  6. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.

    Article  CAS  PubMed  Google Scholar 

  7. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83.

    Article  CAS  PubMed  Google Scholar 

  8. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  CAS  PubMed  Google Scholar 

  9. Lacy PE. The pancreatic beta cell. Structure and function. N Engl J Med. 1967;276:187–95.

    Article  CAS  PubMed  Google Scholar 

  10. Weir GC, Bonner-Weir S. Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest. 1990;85:983–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA. 2006;103:2334–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Weir GC, Bonner-Weir S. Islet β cell mass in diabetes and how it relates to function, birth, and death. Ann N Y Acad Sci. 2013;1281:92–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kota SK, Meher LK, Jammula S, Kota SK, Modi KD. Genetics of type 2 diabetes mellitus and other specific types of diabetes; its role in treatment modalities. Diabetes Metab Syndr. 2012;6:54–8.

    Article  PubMed  Google Scholar 

  14. McDonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem. 2013;50:403–15.

    Article  PubMed  Google Scholar 

  15. Manesso E, Toffolo GM, Butler AE, Butler PC, Cobelli C. Shortened {beta}-cell lifespan leads to {beta}-cell deficit in a rodent model of type 2 diabetes. Am J Physiol Endocrinol Metab. 2011;300:E933–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Marchetti P, Del Guerra S, Marselli L, Lupi R, Masini M, Pollera M, Bugliani M, Boggi U, Vistoli F, Mosca F, Del Prato S. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab. 2004;89:5535–41.

    Article  CAS  PubMed  Google Scholar 

  17. Eizirik DL, Miani M, Cardozo AK. Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia. 2013;56:234–41.

    Article  CAS  PubMed  Google Scholar 

  18. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG. Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes. 2012;61:818–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci. 2005;118:3905–15.

    Article  CAS  PubMed  Google Scholar 

  20. Oram RA, Jones AG, Besser RE, Knight BA, Shields BM, Brown RJ, Hattersley AT, McDonald TJ. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia. 2014;57:187–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Teta M, Long SY, Wartschow LM, Rnakin MM, Kushner JA. Very slow turnover of beta cells in aged adult mice. Diabetes. 2005;54:2557–67.

    Article  CAS  PubMed  Google Scholar 

  22. Tschen SI, Dhawan S, Gurlo T, Bhushan A. Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes. 2009;58:1312–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Perl S, Kushner JA, Buchholz BA, Meeker AK, Stein GM, Hsieh M, Kirby M, Pechhold S, Liu EH, Harlan DM, Tisdale JF. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab. 2010;95:E234–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC, Weir EC, Broadus AE, Stewart AF. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev. 1996;76:127–73.

    CAS  PubMed  Google Scholar 

  25. Wysolmerski JJ. Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab. 2012;97:2947–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res. 2012;27:1231–9.

    Article  CAS  PubMed  Google Scholar 

  27. Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal. 2009;21:1245–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vilardaga JP, Romero G, Friedman PA, Gardella TJ. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci. 2011;68:1–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Vilardaga JP, Gardella TJ, Wehbi VL, Feinstein TN. Non-canonical signaling of the PTH receptor. Trends Pharmacol Sci. 2012;33:423–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Karaplis AC, Luz A, Glowacki J, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994;8:277–89.

    Article  CAS  PubMed  Google Scholar 

  31. Qian J, Colbert MC, Witte D, et al. Midgestational lethality in mice lacking the parathyroid hormone (PTH)/PTH-related peptide receptor is associated with abrupt cardiomyocyte death. Endocrinology. 2003;144:1053–61.

    Article  CAS  PubMed  Google Scholar 

  32. Nissenson RA. Parathyroid hormone (PTH)/PTHrP receptor mutations in human chondrodysplasia. Endocrinology. 1998;139:4753–5.

    Article  CAS  PubMed  Google Scholar 

  33. Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, Silve C. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest. 1998;102:34–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Klopocki E, Hennig BP, Dathe K, Koll R, de Ravel T, Baten E, Blom E, Gillerot Y, Weigel JF, Kruger G, Hiort O, Seemann P, Mundlos S. Deletion and point mutations of PTHLH cause brachydactyly type E. Am J Hum Genet. 2010;86:434–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Maass PG, Wirth J, Aydin A, Rump A, Stricker S, Tinschert S, Otero M, Tsuchimochi K, Goldring MB, Luft FC, Bahring S. A cisregulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to brachydactyly type E. Hum Mol Genet. 2010;19:848–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wysolmerski JJ, Broadus AE, Zhou J, et al. Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Natl Acad Sci USA. 1994;91:1133–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, et al. Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development. 1995;121:3539–47.

    CAS  PubMed  Google Scholar 

  38. Weir EC, Philbrick WM, Amling M, et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA. 1996;93:10240–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Philbrick WM, Dreyer BE, Nakchbandi IA, et al. Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci USA. 1998;95:11846–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Macica CM, Liang G, Lankford KL, Broadus AE. Induction of parathyroid hormone-related peptide following peripheral nerve injury: role as a modulator of Schwann cell phenotype. Glia. 2006;53:637–48.

    Article  PubMed  Google Scholar 

  41. Okazaki K, Jingushi S, Ikenoue T, Urabe K, Sakai H, Iwamoto Y. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res. 2003;21:511–20.

    Article  CAS  PubMed  Google Scholar 

  42. Hutchison C, Pilote M, Roy S. The axolotl limb: a model for bone development, regeneration and fracture healing. Bone. 2007;40:45–56.

    Article  PubMed  Google Scholar 

  43. Price J, Allen S. Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond B Biol Sci. 2004;359:809–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Behrendtsen O, Alexander CM, Werb Z. Cooperative interactions between extracellular matrix, integrins and parathyroid hormone-related peptide regulate parietal endoderm differentiation in mouse embryos. Development. 1995;121:4137–48.

    CAS  PubMed  Google Scholar 

  45. Thiede MA, Harm SC, McKee RL, Grasser WA, Duong LT, Leach RM Jr. Expression of the parathyroid hormone-related protein gene in the avian oviduct: potential role as a local modulator of vascular smooth muscle tension and shell gland motility during the egg-laying cycle. Endocrinology. 1991;129:1958–66.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto M, Harm SC, Grasser WA, Thiede MA. Parathyroid hormone-related protein in the rat urinary bladder: a smooth muscle relaxant produced locally in response to mechanical stretch. Proc Natl Acad Sci USA. 1992;89:5326–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Massfelder T, Helwig JJ. Parathyroid hormone-related protein in cardiovascular development and blood pressure regulation. Endocrinology. 1999;140:1507–10.

    Article  CAS  PubMed  Google Scholar 

  48. Care AD, Abbas SK, Pickard DW, Barri M, Drinkhill M, Findlay JB, White IR, Caple IW. Stimulation of ovine placental transport of calcium and magnesium by mid-molecule fragments of human parathyroid hormone-related protein. Exp Physiol. 1990;75:605–8.

    CAS  PubMed  Google Scholar 

  49. Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA. 1996;93:15233–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Strid H, Care A, Jansson T, Powell T. Parathyroid hormone-related peptide (38–94) amide stimulates ATP-dependent calcium transport in the Basal plasma membrane of the human syncytiotrophoblast. J Endocrinol. 2002;175:517–24.

    Article  CAS  PubMed  Google Scholar 

  51. Miao D, Su H, He B, Gao J, Xia Q, Zhu M, Gu Z, Goltzman D, Karaplis AC. Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein. Proc Natl Acad Sci USA. 2008;105:20309–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Toribio RE, Brown HA, Novince CM, Marlow B, Hernon K, Lanigan LG, Hildreth BE 3rd, Werbeck JL, Shu ST, Lorch G, Carlton M, Foley J, Boyaka P, McCauley LK, Rosol TJ. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. FASEB J. 2010;24:1947–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Massfelder T, Dann P, Wu TL, et al. Opposing mitogenic and anti-mitogenic actions of parathyroid hormone-related protein in vascular smooth muscle cells: a critical role for nuclear targeting. Proc Natl Acad Sci USA. 1997;94:13630–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem. 2003;278:50259–72.

    Article  CAS  PubMed  Google Scholar 

  55. Frolik CA, Black EC, Cain RL, et al. Anabolic and catabolic bone effects of human parathyroid hormone (1–34) are predicted by duration of hormone exposure. Bone. 2003;33:372–9.

    Article  CAS  PubMed  Google Scholar 

  56. Horwitz MJ, Tedesco MB, Gundberg C, Garcia-Ocana A, Stewart AF. Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab. 2003;88:569–75.

    Article  CAS  PubMed  Google Scholar 

  57. Horwitz MJ, Tedesco MB, Garcia-Ocaña A, et al. Parathyroid hormone-related protein for the treatment of postmenopausal osteoporosis: defining the maximal tolerable dose. J Clin Endocrinol Metab. 2010;95:1279–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Tashjian AH Jr, Gagel RF. Teriparatide [human PTH(1–34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res. 2006;21:354–65.

    Article  CAS  PubMed  Google Scholar 

  59. Campos RV, Asa SL, Drucker DJ. Immunocytochemical localization of parathyroid hormone-like peptide in the rat fetus. Cancer Res. 1991;51:6351–7.

    CAS  PubMed  Google Scholar 

  60. Drucker DJ, Asa SL, Henderson J, et al. The parathyroid hormone-like peptide gene is expressed in the normal and neoplastic human endocrine pancreas. Mol Endocrinol. 1989;3:1589–95.

    Article  CAS  PubMed  Google Scholar 

  61. Gaich G, Orloff JJ, Atillasoy EJ, Burtis WJ, Ganz MB, Stewart AF. Amino-terminal parathyroid hormone-related protein: specific binding and cytosolic calcium responses in rat insulinoma cells. Endocrinology. 1993;132:1402–9.

    CAS  PubMed  Google Scholar 

  62. Sawada Y, Zhang B, Okajima F, et al. PTHrP increases pancreatic beta-cell-specific functions in well-differentiated cells. Mol Cell Endocrinol. 2001;182:265–75.

    Article  CAS  PubMed  Google Scholar 

  63. Streutker C, Drucker DJ. Rapid induction of parathyroid hormone-like peptide gene expression by sodium butyrate in a rat islet cell line. Mol Endocrinol. 1991;5:703–8.

    Article  CAS  PubMed  Google Scholar 

  64. Mashima H, Yamada S, Tajima T, et al. Genes expressed during the differentiation of pancreatic AR42 J cells into insulin-secreting cells. Diabetes. 1999;48:304–9.

    Article  CAS  PubMed  Google Scholar 

  65. Plawner LL, Philbrick WM, Burtis WJ, Broadus AE, Stewart AF. Cell type-specific secretion of parathyroid hormone-related protein via the regulated versus the constitutive secretory pathway. J Biol Chem. 1995;270:14078–84.

    Article  CAS  PubMed  Google Scholar 

  66. Karperien M, van Dijk TB, Hoeijmakers T, et al. Expression pattern of parathyroid hormone/parathyroid hormone related peptide receptor mRNA in mouse postimplantation embryos indicates involvement in multiple developmental processes. Mech Dev. 1994;47:29–42.

    Article  CAS  PubMed  Google Scholar 

  67. Fujinaka Y, Sipula D, Garcia-Ocana A, et al. Characterization of mice doubly transgenic for parathyroid hormone-related protein and murine placental lactogen: a novel role for placental lactogen in pancreatic beta-cell survival. Diabetes. 2004;53:3120–30.

    Article  CAS  PubMed  Google Scholar 

  68. Fadda GZ, Akmal M, Lipson LG, et al. Direct effect of parathyroid hormone on insulin secretion from pancreatic islets. Am J Physiol. 1990;258:E975–84.

    CAS  PubMed  Google Scholar 

  69. Villanueva-Penacarrillo ML, Cancelas J, de Miguel F, et al. Parathyroid hormone-related peptide stimulates DNA synthesis and insulin secretion in pancreatic islets. J Endocrinol. 1999;163:403–8.

    Article  CAS  PubMed  Google Scholar 

  70. Vasavada RC, Wang L, Fujinaka Y, Takane KK, Rosa T, Mellado-Gil JM, Garcia-Ocaña A. Protein kinase C-ζ markedly enhances β-cell proliferation: an essential role in growth factor-mediated β-cell mitogenesis. Diabetes. 2007;56:2732–43.

    Article  CAS  PubMed  Google Scholar 

  71. Vasavada RC, Gonzalez-Pertusa JA, Fujinaka Y, Fiaschi-Taesch NM, Cozar I, Garcia-Ocaña A. Growth factors and pancreatic beta cell proliferation. Int J Cell Biol Biochem. 2006;38:931–50.

    Article  CAS  Google Scholar 

  72. Fujinaka Y, Wang L, Matsushita T, Vasavada RC. Role of parathyroid hormone-related protein and lactogens in the pancreatic beta cell. In: R. Kulkarni editor. Islet cell growth factors. Landes Bioscience/Eureka, 2006; pp. 1–22.

  73. Cebrian A, Garcia-Ocaña A, Takane KK, Sipula D, Stewart AF, Vasavada RC. Overexpression of parathyroid hormone-related protein inhibits pancreatic beta cell death in vivo and in vitro. Diabetes. 2002;51:3003–13.

    Article  CAS  PubMed  Google Scholar 

  74. Guthalu NK, Zhang XY, Williams K, Mozar A, Vasavada RC. Growth factor mediated regulation of beta cell survival. Open Endocr J. 2010;4:80–95.

    Google Scholar 

  75. Vasavada RC, Cavaliere C, D’Ercole AJ, Dann P, Burtis WJ, Madlener AL, Zawalich K, Zawalich W, Philbrick WM, Stewart AF. Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypoglycemia. J Biol Chem. 1996;271:1200–8.

    Article  CAS  PubMed  Google Scholar 

  76. Porter SE, Sorenson RL, Dann P, Garcia-Ocaña A, Stewart AF, Vasavada RC. Progressive pancreatic islet hyperplasia in the islet-targeted, parathyroid hormone-related protein-overexpressing mouse. Endocrinology. 1998;139:3743–51.

    CAS  PubMed  Google Scholar 

  77. Williams K, Abanquah D, Joshi-Gokhale S, Otero A, Lin H, Guthalu NK, Zhang XY, Mozar A, Bisello A, Stewart AF, Garcia-Ocaña A, Vasavada RC. Systemic and acute administration of parathyroid hormone-related peptide 1-36 stimulates endogenous beta cell proliferation while preserving function in adult mice. Diabetologia. 2011;54:2867–77.

    Article  CAS  PubMed  Google Scholar 

  78. Perna AF, Fadda GZ, Zhou XJ, Massry SG. Mechanisms of impaired insulin secretion after chronic excess of parathyroid hormone. Am J Physiol. 1990;259:F210–6.

    CAS  PubMed  Google Scholar 

  79. Bogin E, Massry SG, Harary I. Effect of parathyroid hormone on rat heart cells. J Clin Invest. 1981;67:1215–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Baczynski R, Massry SG, Kohan R, Magott M, Saglikes Y, Brautbar N. Effect of parathyroid hormone on myocardial energy metabolism in the rat. Kidney Int. 1985;27:718–25.

    Article  CAS  PubMed  Google Scholar 

  81. Doherty CC, LaBelle P, Collins JF, Brautbar N, Massry SG. Effect of parathyroid hormone on random migration of human polymorphonuclear leukocytes. Am J Nephrol. 1988;8:212–9.

    Article  CAS  PubMed  Google Scholar 

  82. Sipula D, Garcia-Ocaña A, Karaplis A, et al. Conditional knockout of parathyroid hormone-related protein (PTHrP) in the beta cells causes resistance to beta cell death. Diabetes. 2003;52(Suppl. 1):A356.

    Google Scholar 

  83. Zhang XY, Guthalu NK, Williams K, Mozar A, Vasavada RC. Physiological role of parathyroid hormone-related protein (PTHrP) and parathyroid hormone-1 receptor (PTH1R) signaling in the pancreatic β-cell. 2010; 92nd Annual Meeting of the Endocrine Society.

  84. Zhang B, Hosaka M, Sawada Y, et al. Parathyroid hormone-related protein induces insulin expression through activation of MAP kinase-specific phosphatase-1 that dephosphorylates c-Jun NH2-terminal kinase in pancreatic beta-cells. Diabetes. 2003;52:2720–30.

    Article  CAS  PubMed  Google Scholar 

  85. Kim H, Kalkhoff RK, Costrini NV, Cerletty JM, Jacobson M. Plasma insulin disturbances in primary hyperparathyroidism. J Clin Invest. 1971;50:2596–605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Ljunghall S, Palmér M, Akerström G, Wide L. Diabetes mellitus, glucose tolerance and insulin response to glucose in patients with primary hyperparathyroidism before and after parathyroidectomy. Eur J Clin Invest. 1983;13:373–7.

    Article  CAS  PubMed  Google Scholar 

  87. Ishida H, Suzuki K, Someya Y, Nishimura M, Sugimoto C, Goto M, Taguchi Y, Kasahara H, Kadowaki S, Imura H, et al. Possible compensatory role of parathyroid hormone-related peptide on maintenance of calcium homeostasis in patients with non-insulin-dependent diabetes mellitus. Acta Endocrinol (Copenh). 1993;129:519–24.

    CAS  PubMed  Google Scholar 

  88. Moseley JM, Hayman JA, Danks JA, et al. Immunohistochemical detection of parathyroid hormone-related protein in human fetal epithelia. J Clin Endocrinol Metab. 1991;73:478–84.

    Article  CAS  PubMed  Google Scholar 

  89. Asa SL, Henderson J, Goltzman D, et al. Parathyroid hormone-like peptide in normal and neoplastic human endocrine tissues. J Clin Endocrinol Metab. 1990;71:1112–8.

    Article  CAS  PubMed  Google Scholar 

  90. Kitazawa S, Fukase M, Kitazawa R, et al. Immunohistologic evaluation of parathyroid hormone-related protein in human lung cancer and normal tissue with newly developed monoclonal antibody. Cancer. 1991;67:984–9.

    Article  CAS  PubMed  Google Scholar 

  91. Sawada Y, Kameya T, Aizama T, et al. Proprotein-processing endoprotease furin and its substrate parathyroid hormone-related protein are coexpressed in insulinoma cells. Endocr Pathol. 2000;11:31–9.

    Article  CAS  PubMed  Google Scholar 

  92. Guthalu NK, Joshi-Gokhale S, Harb G, Williams K, Zhang XY, Takane KK, Zhang P, Scott D, Stewart AF, Garcia-Ocaña A, Vasavada RC. Parathyroid hormone-related protein (PTHrP) enhances human β-cell proliferation and function with simultaneous induction of cyclin-dependent-kinase 2 (cdk2) and CyclinE expression. Diabetes. 2010;59:3131–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported over the years by grants to RCV from the National Institutes of Health (DK078060 and DK068831), the Juvenile Diabetes Research Foundation (1-2008-46), and the American Diabetes Association (Junior Faculty Award). We acknowledge the IIDP/JDRF Basic Science Islet Distribution Programs for supplying human islets.

Disclosures

Conflict of interest

Anaïs Mozar, Nagesha Guthalu Kondegowda, Ilana Pollack, Rafael Fenutria, and Rupangi C. Vasavada declare that they have no conflict of interest associated with this manuscript.

Animal/Human Studies

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupangi C. Vasavada.

Additional information

Anaïs Mozar and Nagesha Guthalu Kondegowda have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozar, A., Kondegowda, N.G., Pollack, I. et al. The Role of PTHrP in Pancreatic Beta-Cells and Implications for Diabetes Pathophysiology and Treatment. Clinic Rev Bone Miner Metab 12, 165–177 (2014). https://doi.org/10.1007/s12018-014-9168-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-014-9168-3

Keywords

Navigation