Skip to main content
Log in

Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Persistent hyperglycemia is associated with chronic oxidative stress which contributes to the development and progression of diabetes-associated complications. The sensitivity of pancreatic β-cells to oxidative stress has been attributed to their low content of antioxidants compared with other tissues. Bioactive compounds with potent antidiabetic properties have been shown to ameliorate hyperglycemia mediated oxidative stress. Recently, we have reported that oral administration of fisetin (10 mg/Kg b.w.), a bioflavonoid found to be present in strawberries, persimmon, to STZ-induced experimental diabetic rats significantly improved normoglycemia. The present study was aimed to evaluate the antioxidant potential of fisetin in both in vitro and in vivo. Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg body weight). Fisetin was administered orally for 30 days. At the end of the study, all animals were killed. Blood samples were collected for the biochemical estimations. The antioxidant status was evaluated. Histological examinations were performed on pancreatic tissues. Fisetin treatment showed a significant decline in the levels of blood glucose, glycosylated hemoglobin (HbA1c), NF-kB p65 unit (in pancreas) and IL-1β (plasma), serum nitric oxide (NO) with an elevation in plasma insulin. The treatment also improved the antioxidant status in pancreas as well as plasma of diabetic rats indicating the antioxidant potential of fisetin. In addition, the results of DPPH and ABTS assays substantiate the free radical scavenging activity of fisetin. Histological studies of the pancreas also evidenced the tissue protective nature of fisetin. It is concluded that, fisetin possesses antioxidant and anti-inflammatory property and may be considered as an adjunct for the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

AGEs:

Advanced glycation end products

DPPH-2,:

2-Diphenyl-1-picrylhydrazyl

ABTS-2,:

2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt

DMSO:

Dimethyl sulphoxide

STZ:

Streptozotocin

HbAlc:

Glycosylated hemoglobin

SOD:

Superoxide dismutase

CAT:

Catalase

GPx:

Glutathione peroxidase

GST:

Glutathione S transferase

GSH:

Reduced glutathione

NO:

Nitric oxide

NF-κB:

Nuclear factor κB

IL-1β:

Interleukin 1β

LSD:

Least significant difference

SD:

Standard deviation

References

  1. R. Pazdro, J.R. Burgess, The role of vitamin E and oxidative stress in diabetes complications. Mech. Ageing Dev. 131, 276–286 (2010). doi:10.1016/j.mad.2010.03.005

    Article  PubMed  CAS  Google Scholar 

  2. S.S. Ali, N. Kasoju, A. Luthra, A. Singh, H. Sharanabasava, A. Sahu, Indian medicinal herbs as sources of antioxidants. Food Res. Int. 41, 1–15 (2008). doi:10.1016/j.foodres.2007.10.001

    Article  Google Scholar 

  3. M. Brownlee, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615–1625 (2005). doi:10.2337/diabetes.54.6.161

    Article  PubMed  CAS  Google Scholar 

  4. C. Karasu, Glycoxidative stress and cardiovascular complications in experimentally-induced diabetes: effects of antioxidant treatment. Open Cardiovasc Med J. 4, 240–256 (2010). doi:10.2174/1874192401004010240

    Article  PubMed  CAS  Google Scholar 

  5. R. Scherer, H.T. Godoy, Antioxidant activity index (AAI) by the 2, 2 diphenyl-1-picrylhydrazyl method. Food Chem. 112, 654–658 (2009). doi:10.1016/j.foodchem.2008.06.026

    Article  CAS  Google Scholar 

  6. J.W. Finley, A.N. Kong, K.J. Hintze, E.H. Jeffery, L.L. Ji, X.G. Lei, Antioxidants in foods: state of the science important to the food industry. J. Agric. Food Chem. 59, 6837–6846 (2011). doi:10.1021/jf201387

    Article  PubMed  CAS  Google Scholar 

  7. P.C. Wootton-Beard, L. Ryan, Improving public health?: the role of antioxidant-rich fruit and vegetable beverages. Food Res. Int. 44, 3135–3148 (2011). doi:10.1016/j.foodres.2011.09.015

    Article  Google Scholar 

  8. M.G.L. Hertog, P.C.H. Hollman, B. van de Putte, Content of potentially anticarcinogenic flavonoids of tea infusions, wines and fruit juices. J. Agric. Food Chem. 41, 1242–1246 (1993). doi:10.1021/jf00032a015

    Article  CAS  Google Scholar 

  9. S. Ozgová, J. Hermánek, I. Gut, Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH-, Fe-ascorbate- and Fe-microsomal systems. Biochem Pharmacol. 66, 1127–1137 (2003). doi:10.1016/S0006-2952(03)00425-8

    Article  PubMed  Google Scholar 

  10. F.A. van Acker, O. Schouten, G.R. Haenen, W.J. van der Vijgh, A. Bast, Flavonoids can replace alpha-tocopherol as an antioxidant. FEBS Lett. 473, 145–148 (2000). doi:10.1016/S0014-5793(00)01517-9

    Article  PubMed  Google Scholar 

  11. Y. Arai, S. Watanabe, M. Kimira, K. Shimoi, R. Mochizuki, N. Kinae, Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 130, 2243–2250 (2000)

    PubMed  CAS  Google Scholar 

  12. Y. Suh, F. Afaq, N. Khan, J.J. Johnson, F.H. Khusro, H. Mukhtar, Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis 31, 1424–1433 (2010). doi:10.1093/carcin/bgq115

    Article  PubMed  CAS  Google Scholar 

  13. T. Fotsis, M.S. Pepper, R. Montesano, E. Aktas, S. Breit, L. Schweigerer, S. Rasku, K. Wähälä, H. Adlercreutz, Phytoestrogens and inhibition of angiogenesis. Bailliere Clin Endocr. 12, 649–666 (1998)

    Article  CAS  Google Scholar 

  14. H. Cheong, S.Y. Ryu, M.H. Oak, S.H. Cheon, G.S. Yoo, K.M. Kim, Studies of structure activity relationship of flavonoids for the anti-allergic actions. Arch. Pharm Res. 21, 478–480 (1998)

    Article  PubMed  CAS  Google Scholar 

  15. R.L. Divi, D.R. Doerge, Inhibition of thyroid peroxidase by dietary flavonoids. Chem. Res. Toxicol. 9, 16–23 (1996). doi:10.1021/tx950076m

    Article  PubMed  CAS  Google Scholar 

  16. R.P. Constantin, J. Constantin, C.L. Pagadigorria, E.L. Ishii-Iwamoto, A. Bracht, K. Ono Mde, N.S. Yamamoto, The actions of fisetin on glucose metabolism in the rat liver. Cell Biochem. Funct. 28, 149–158 (2010). doi:10.1002/cbf.1635

    Article  PubMed  CAS  Google Scholar 

  17. G. SriramPrasath, S. Subramanian, Fistein, a bioflavonoid ameliorates hyperglycemia in STZ induced experimental diabetes in rats. Int J Pharm Sci Rev Res 6, 68–74 (2011)

    CAS  Google Scholar 

  18. G.S. Prasath, S.P. Subramanian, Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 668, 492–496 (2011). doi:10.1016/j.ejphar.2011.07.021

    Article  PubMed  CAS  Google Scholar 

  19. W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free-radical method to evaluate antioxidant activity. Food Sci Technol-Leb. 28, 25–30 (1995). doi:10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  20. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26, 1231–1237 (1999)

    Article  PubMed  CAS  Google Scholar 

  21. N. Rakieten, M.L. Rakieten, M.V. Nadkarni, Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 29, 91–98 (1963)

    Google Scholar 

  22. L.J. Fischer, D.E. Rickert, Pancreatic islet-cell toxicity. Crit. Rev. Toxicol. 3, 231–263 (1975)

    Article  CAS  Google Scholar 

  23. S.S. Nayak, T.N. Pattabiraman, A new colorimetric method for the estimation of glycosylated hemoglobin. Clin. Chim. Acta 109, 267–274 (1981)

    Article  PubMed  CAS  Google Scholar 

  24. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  CAS  Google Scholar 

  25. H.P. Misra, T. Fridrovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175 (1972)

    PubMed  CAS  Google Scholar 

  26. S. Takahara, H.B. Hamilton, J.V. Neel, T.Y. Kobara, Y. Ogura, E.T. Nishimura, Hypocatalasemia: a new genetic carrier state. J Clin Invest. 39, 610–619 (1960)

    Article  PubMed  CAS  Google Scholar 

  27. J.T. Rotruck, A.L. Pope, H.E. Ganther, A.B. Swanson, D.G. Hafeman, W.G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590 (1973)

    Article  PubMed  CAS  Google Scholar 

  28. W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974)

    PubMed  CAS  Google Scholar 

  29. S.T. Omaye, J.D. Turnbull, H.E. Sauberlich, Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol. 62, 3–11 (1979)

    Article  PubMed  CAS  Google Scholar 

  30. Desai J.D.: Methods in enzymology. In: Parker (eds), pp. 138. Academic Press, New York, (1984)

  31. H.A. Ravin, An improved colorimetric enzymatic assay of ceruloplasmin. J. Lab. Clin. Med. 58, 161–168 (1961)

    PubMed  CAS  Google Scholar 

  32. J. Sedlak, R.H. Lindsay, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25, 192–205 (1968)

    Article  PubMed  CAS  Google Scholar 

  33. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979)

    Article  PubMed  CAS  Google Scholar 

  34. Z.Y. Jiang, J.V. Hunt, S.P. Wolff, Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 202, 384–389 (1992)

    Article  PubMed  CAS  Google Scholar 

  35. L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, S.R. Tannenbaum, Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131–138 (1982)

    Article  PubMed  CAS  Google Scholar 

  36. K. Gordon, P Bradbury, in Theory and practice of histological techniques, microtomy and paraffin sections, ed. by J.D. Bancroft, A. Stevens (Churchill Livingston, New York, 1990), pp. 61–80

    Google Scholar 

  37. T. Szkudelski, The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50, 537–546 (2001)

    PubMed  CAS  Google Scholar 

  38. G. Alper, S. Irer, E. Duman, O. Caglayan, C. Yilmaz, Effect of I-deprenyl and gliclazide on oxidant stress/antioxidant status and DNA damage in a diabetic rat model. Endocr. Res. 31, 199–212 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. H.S. Kang, K.R. Kim, E.M. Jun, S.H. Park, T.S. Lee, J.W. Suh, J.P. Kim, Cyathuscavins A, B, and C, new free radical scavengers with DNA protection activity from the Basidiomycete Cyathus stercoreus. Bioorg. Med. Chem. Lett. 18, 4047–4050 (2008). doi:10.1016/j.bmcl.2008.05.110

    Article  PubMed  CAS  Google Scholar 

  40. J.M. Lü, P.H. Lin, Q. Yao, C. Chen, Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell Mol. Med. 14, 840–860 (2010). doi:10.1111/j.1582-4934.2009.00897.x

    Article  PubMed  Google Scholar 

  41. M. Nishizawa, M. Kohno, M. Nishimura, A. Kitagawa, Y. Niwano, Non-reductive scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) by peroxyradical: a useful method for quantitative analysis of peroxyradical. Chem Pharm Bull Tokyo 53, 714–716 (2005)

    Article  PubMed  CAS  Google Scholar 

  42. E.J. Lien, S. Ren, H.H. Bui, R. Wang, Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med. 26, 285–294 (1999)

    Article  PubMed  CAS  Google Scholar 

  43. R. Edenharder, D. Grünhage, Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutat. Res. 540, 1–18 (2003). doi:10.1016/S1383-5718(03)00114-1

    Article  PubMed  CAS  Google Scholar 

  44. H. de Groot, U. Rauen, Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam. Clin. Pharmacol. 12, 249–255 (1998). doi:10.1111/j.1472-8206.1998.tb00951.x

    Article  PubMed  Google Scholar 

  45. R. Babujanarthanam, P. Kavitha, U.S. MahadevaRao, M.R. Pandian, Quercitrin a bioflavonoid improves the antioxidant status in streptozotocin: induced diabetic rat tissues. Mol Cell Biochem 358, 121–129 (2011). doi:10.1007/s11010-011-0927-x

    Article  PubMed  CAS  Google Scholar 

  46. S. Malireddy, S.R. Kotha, J.D. Secor, T.O. Gurney, J.L. Abbott, G. Maulik, K.R. Maddipati, N.L. Parinandi, Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid. Redox Signal. 17, 327–339 (2012)

    Article  PubMed  CAS  Google Scholar 

  47. S. Lenzen, J. Drinkgern, M. Tiedge, Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 20, 463–466 (1996)

    Article  PubMed  CAS  Google Scholar 

  48. N. Welsh, D.L. Eizirik, K. Bendtzen, S. Sandler, Interleukin-1-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 129, 3167–3173 (1991)

    Article  PubMed  CAS  Google Scholar 

  49. G. Wachlin, P. Augstein, D. Schroder, B. Kuttler, I. Kloting, P. Heinke, S. Schmidt, IL-1 beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J. Autoimmun. 20, 303–312 (2003). doi:10.1016/S0896-8411(03)00039-8

    Article  PubMed  CAS  Google Scholar 

  50. K. Bendtzen, T. Mandrup-Poulsen, J. Nerup, J.H. Nielsen, C.A. Dinarello, M. Svenson, Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 232, 1545–1547 (1986). doi:10.1126/science.3086977

    Article  PubMed  CAS  Google Scholar 

  51. C. Park, J.R. Kim, J.K. Shim, B.S. Kang, Y.G. Park, K.S. Nam, Y.C. Lee, C.H. Kim, Inhibitory effects of streptozotocin, tumor necrosis factor-α, and interleukin-1 on glucokinase activity in pancreatic islets and gene expression of GLUT2 and glucokinase. Arch. Biochem. Biophys. 362, 217–224 (1999). doi:10.1006/abbi.1998.1004

    Article  PubMed  CAS  Google Scholar 

  52. C.A. Delaney, D. Pavlovic, A. Hoorens, D.G. Pipeleers, D.L. Eizirik, Cytokines induce deoxyribonucleic acid strand breaks and apoptosis in human pancreatic islet cells. Endocrinology 138, 2610–2614 (1997). doi:10.1210/en.138.6.2610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Research Fellowship of the University Grant Commission (UGC), New Delhi, India, to Mr. G. Sriram Prasath is gratefully acknowledged. The authors also wish to record their sincere thanks to Mrs. Rita Rajan and Mr. P. Srinivasan, The Welcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632 004, India, for their help in histopathological studies.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorimuthu Pillai Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasath, G.S., Sundaram, C.S. & Subramanian, S.P. Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats. Endocrine 44, 359–368 (2013). https://doi.org/10.1007/s12020-012-9866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9866-x

Keywords

Navigation