Skip to main content
Log in

Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Ghrelin and its synthetic analog hexarelin are specific ligands of growth hormone secretagogue (GHS) receptor. GHS have strong growth hormone-releasing effect and other neuroendocrine activities such as stimulatory effects on prolactin and adrenocorticotropic hormone secretion. Recently, several studies have reported other beneficial functions of GHS that are independent of GH. Ghrelin and hexarelin, for examples, have been shown to exert GH-independent cardiovascular activity. Hexarelin has been reported to regulate peroxisome proliferator-activated receptor gamma (PPAR-γ) in macrophages and adipocytes. PPAR-γ is an important regulator of adipogenesis, lipid metabolism, and insulin sensitization. Ghrelin also shows protective effects on beta cells against lipotoxicity through activation of phosphatidylinositol-3 kinase/protein kinase B, c-Jun N-terminal kinase (JNK) inhibition, and nuclear exclusion of forkhead box protein O1. Acylated ghrelin (AG) and unacylated ghrelin (UAG) administration reduces glucose levels and increases insulin-producing beta cell number, and insulin secretion in pancreatectomized rats and in newborn rats treated with streptozotocin, suggesting a possible role of GHS in pancreatic regeneration. Therefore, the discovery of GHS has opened many new perspectives in endocrine, metabolic, and cardiovascular research areas, suggesting the possible therapeutic application in diabetes and diabetic complications especially diabetic cardiomyopathy. Here, we review the physiological roles of ghrelin and hexarelin in the protection and regeneration of beta cells and their roles in the regulation of insulin release, glucose, and fat metabolism and present their potential therapeutic effects in the treatment of diabetes and diabetic-associated heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L. Guariguata, D.R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, J.E. Shaw, Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103(2), 137–149 (2014). doi:10.1016/j.diabres.2013.11.002

    CAS  PubMed  Google Scholar 

  2. D.A. Stoffers, The development of beta-cell mass: recent progress and potential role of GLP-1. Hormone Metab. Res. 36(11–12), 811–821 (2004). doi:10.1055/s-2004-826168

    CAS  Google Scholar 

  3. R. Colagiuri, R. Short, A. Buckley, The status of national diabetes programmes: a global survey of IDF member associations. Diabetes Res. Clin. Pract. 87(2), 137–142 (2010). doi:10.1016/j.diabres.2009.10.005

    PubMed  Google Scholar 

  4. J.A. Wali, H.E. Thomas, A.P. Sutherland, Linking obesity with type 2 diabetes: the role of T-bet. Diabetes Metabol. Syndr. Obes. 7, 331–340 (2014). doi:10.2147/DMSO.S51432

    CAS  Google Scholar 

  5. H. Sakuraba, H. Mizukami, N. Yagihashi, R. Wada, C. Hanyu, S. Yagihashi, Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45(1), 85–96 (2002). doi:10.1007/s001250200009

    CAS  PubMed  Google Scholar 

  6. P. Marchetti, S. Del Guerra, L. Marselli, R. Lupi, M. Masini, M. Pollera, M. Bugliani, U. Boggi, F. Vistoli, F. Mosca, S. Del Prato, Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab. 89(11), 5535–5541 (2004). doi:10.1210/jc.2004-0150

    CAS  PubMed  Google Scholar 

  7. I. Cozar-Castellano, N. Fiaschi-Taesch, T.A. Bigatel, K.K. Takane, A. Garcia-Ocana, R. Vasavada, A.F. Stewart, Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr. Rev. 27(4), 356–370 (2006). doi:10.1210/er.2006-0004

    CAS  PubMed  Google Scholar 

  8. D.R. Matthews, The natural history of diabetes-related complications: the UKPDS experience. United Kingdom Prospective Diabetes Study. Diabetes Obes. Metab. 1(Suppl 2), S7–S13 (1999)

    PubMed  Google Scholar 

  9. R.R. Holman, Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res. Clin. Pract. 40(Suppl), S21–S25 (1998)

    CAS  PubMed  Google Scholar 

  10. M. Prentki, C.J. Nolan, Islet beta cell failure in type 2 diabetes. J. Clin. Investig. 116(7), 1802–1812 (2006). doi:10.1172/JCI29103

    PubMed Central  CAS  PubMed  Google Scholar 

  11. B.L. Wajchenberg, Beta-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev. 28(2), 187–218 (2007). doi:10.1210/10.1210/er.2006-0038

    CAS  PubMed  Google Scholar 

  12. P.A. Halban, K.S. Polonsky, D.W. Bowden, M.A. Hawkins, C. Ling, K.J. Mather, A.C. Powers, C.J. Rhodes, L. Sussel, G.C. Weir, Beta-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37(6), 1751–1758 (2014). doi:10.2337/dc14-0396

    PubMed  Google Scholar 

  13. W. Quan, E.K. Jo, M.S. Lee, Role of pancreatic beta-cell death and inflammation in diabetes. Diabetes Obes. Metab. 15(Suppl 3), 141–151 (2013). doi:10.1111/dom.12153

    CAS  PubMed  Google Scholar 

  14. M.S. Akash, K. Rehman, S. Chen, Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 114(3), 525–531 (2013). doi:10.1002/jcb.24402

    CAS  PubMed  Google Scholar 

  15. R.P. Robertson, J. Harmon, P.O. Tran, Y. Tanaka, H. Takahashi, Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52(3), 581–587 (2003)

    CAS  PubMed  Google Scholar 

  16. A. Klip, M.R. Paquet, Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13(3), 228–243 (1990)

    CAS  PubMed  Google Scholar 

  17. I. Shimomura, R.E. Hammer, S. Ikemoto, M.S. Brown, J.L. Goldstein, Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401(6748), 73–76 (1999). doi:10.1038/43448

    CAS  PubMed  Google Scholar 

  18. K. Ebihara, Y. Ogawa, H. Masuzaki, M. Shintani, F. Miyanaga, M. Aizawa-Abe, T. Hayashi, K. Hosoda, G. Inoue, Y. Yoshimasa, O. Gavrilova, M.L. Reitman, K. Nakao, Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes 50(6), 1440–1448 (2001)

    CAS  PubMed  Google Scholar 

  19. K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda, M. Nishida, S. Kihara, N. Sakai, T. Nakajima, K. Hasegawa, M. Muraguchi, Y. Ohmoto, T. Nakamura, S. Yamashita, T. Hanafusa, Y. Matsuzawa, Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20(6), 1595–1599 (2000)

    CAS  PubMed  Google Scholar 

  20. M.L. Reitman, O. Gavrilova, A-ZIP/F-1 mice lacking white fat: a model for understanding lipoatrophic diabetes. Int. J. Obes. Relat. Metabol. Disord. 24(Suppl 4), S11–S14 (2000)

    CAS  Google Scholar 

  21. O. Gavrilova, B. Marcus-Samuels, D. Graham, J.K. Kim, G.I. Shulman, A.L. Castle, C. Vinson, M. Eckhaus, M.L. Reitman, Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Investig. 105(3), 271–278 (2000). doi:10.1172/JCI7901

    PubMed Central  CAS  PubMed  Google Scholar 

  22. J.C. Bruning, M.D. Michael, J.N. Winnay, T. Hayashi, D. Horsch, D. Accili, L.J. Goodyear, C.R. Kahn, A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2(5), 559–569 (1998)

    CAS  PubMed  Google Scholar 

  23. E.D. Abel, O. Peroni, J.K. Kim, Y.B. Kim, O. Boss, E. Hadro, T. Minnemann, G.I. Shulman, B.B. Kahn, Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409(6821), 729–733 (2001). doi:10.1038/35055575

    CAS  PubMed  Google Scholar 

  24. C.J. Shu, C. Benoist, D. Mathis, The immune system’s involvement in obesity-driven type 2 diabetes. Semin. Immunol. 24(6), 436–442 (2012). doi:10.1016/j.smim.2012.12.001

    PubMed Central  CAS  PubMed  Google Scholar 

  25. M. Kojima, K. Kangawa, Ghrelin: structure and function. Physiol. Rev. 85(2), 495–522 (2005). doi:10.1152/physrev.00012.2004

    CAS  PubMed  Google Scholar 

  26. C.Y. Chen, A. Asakawa, M. Fujimiya, S.D. Lee, A. Inui, Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol. Rev. 61(4), 430–481 (2009). doi:10.1124/pr.109.001958

    CAS  PubMed  Google Scholar 

  27. F. Broglio, C. Gottero, F. Prodam, C. Gauna, G. Muccioli, M. Papotti, T. Abribat, A.J. Van Der Lely, E. Ghigo, Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J. Clin. Endocrinol. Metab. 89(6), 3062–3065 (2004). doi:10.1210/jc.2003-031964

    CAS  PubMed  Google Scholar 

  28. C. Gauna, P.J. Delhanty, L.J. Hofland, J.A. Janssen, F. Broglio, R.J. Ross, E. Ghigo, A.J. van der Lely, Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes. J. Clin. Endocrinol. Metab. 90(2), 1055–1060 (2005). doi:10.1210/jc.2004-1069

    CAS  PubMed  Google Scholar 

  29. R. Kumar, A. Salehi, J.F. Rehfeld, P. Hoglund, E. Lindstrom, R. Hakanson, Proghrelin peptides: desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets. Regul. Pept. 164(2–3), 65–70 (2010). doi:10.1016/j.regpep.2010.06.005

    CAS  PubMed  Google Scholar 

  30. G. Muccioli, N. Pons, C. Ghe, F. Catapano, R. Granata, E. Ghigo, Ghrelin and des-acyl ghrelin both inhibit isoproterenol-induced lipolysis in rat adipocytes via a non-type 1a growth hormone secretagogue receptor. Eur. J. Pharmacol. 498(1–3), 27–35 (2004). doi:10.1016/j.ejphar.2004.07.066

    CAS  PubMed  Google Scholar 

  31. K. Toshinai, H. Yamaguchi, Y. Sun, R.G. Smith, A. Yamanaka, T. Sakurai, Y. Date, M.S. Mondal, T. Shimbara, T. Kawagoe, N. Murakami, M. Miyazato, K. Kangawa, M. Nakazato, Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology 147(5), 2306–2314 (2006). doi:10.1210/en.2005-1357

    CAS  PubMed  Google Scholar 

  32. H. Chung, S. Seo, M. Moon, S. Park, Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J. Endocrinol. 198(3), 511–521 (2008). doi:10.1677/JOE-08-0160

    CAS  PubMed  Google Scholar 

  33. G. Baldanzi, N. Filigheddu, S. Cutrupi, F. Catapano, S. Bonissoni, A. Fubini, D. Malan, G. Baj, R. Granata, F. Broglio, M. Papotti, N. Surico, F. Bussolino, J. Isgaard, R. Deghenghi, F. Sinigaglia, M. Prat, G. Muccioli, E. Ghigo, A. Graziani, Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J. Cell Biol. 159(6), 1029–1037 (2002). doi:10.1083/jcb.200207165

    PubMed Central  CAS  PubMed  Google Scholar 

  34. X.M. Guan, H. Yu, O.C. Palyha, K.K. McKee, S.D. Feighner, D.J. Sirinathsinghji, R.G. Smith, L.H. Van der Ploeg, A.D. Howard, Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 48(1), 23–29 (1997)

    CAS  PubMed  Google Scholar 

  35. A.D. Howard, S.D. Feighner, D.F. Cully, J.P. Arena, P.A. Liberator, C.I. Rosenblum, M. Hamelin, D.L. Hreniuk, O.C. Palyha, J. Anderson, P.S. Paress, C. Diaz, M. Chou, K.K. Liu, K.K. McKee, S.S. Pong, L.Y. Chaung, A. Elbrecht, M. Dashkevicz, R. Heavens, M. Rigby, D.J. Sirinathsinghji, D.C. Dean, D.G. Melillo, A.A. Patchett, R. Nargund, P.R. Griffin, J.A. DeMartino, S.K. Gupta, J.M. Schaeffer, R.G. Smith, L.H. Van der Ploeg, A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273(5277), 974–977 (1996)

    CAS  PubMed  Google Scholar 

  36. G. Muccioli, A. Baragli, R. Granata, M. Papotti, E. Ghigo, Heterogeneity of ghrelin/growth hormone secretagogue receptors. Toward the understanding of the molecular identity of novel ghrelin/GHS receptors. Neuroendocrinology 86(3), 147–164 (2007). doi:10.1159/000105141

    CAS  PubMed  Google Scholar 

  37. Y. Shuto, T. Shibasaki, K. Wada, I. Parhar, J. Kamegai, H. Sugihara, S. Oikawa, I. Wakabayashi, Generation of polyclonal antiserum against the growth hormone secretagogue receptor (GHS-R): evidence that the GHS-R exists in the hypothalamus, pituitary and stomach of rats. Life Sci. 68(9), 991–996 (2001)

    CAS  PubMed  Google Scholar 

  38. Y. Date, M. Kojima, H. Hosoda, A. Sawaguchi, M.S. Mondal, T. Suganuma, S. Matsukura, K. Kangawa, M. Nakazato, Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141(11), 4255–4261 (2000). doi:10.1210/endo.141.11.7757

    CAS  PubMed  Google Scholar 

  39. K. Mori, A. Yoshimoto, K. Takaya, K. Hosoda, H. Ariyasu, K. Yahata, M. Mukoyama, A. Sugawara, H. Hosoda, M. Kojima, K. Kangawa, K. Nakao, Kidney produces a novel acylated peptide, ghrelin. FEBS Lett. 486(3), 213–216 (2000)

    CAS  PubMed  Google Scholar 

  40. N. Nagaya, M. Kojima, M. Uematsu, M. Yamagishi, H. Hosoda, H. Oya, Y. Hayashi, K. Kangawa, Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280(5), R1483–R1487 (2001)

    CAS  PubMed  Google Scholar 

  41. M. Korbonits, R.A. Jacobs, S.J. Aylwin, J.M. Burrin, P.L. Dahia, J.P. Monson, J. Honegger, R. Fahlbush, P.J. Trainer, S.L. Chew, G.M. Besser, A.B. Grossman, Expression of the growth hormone secretagogue receptor in pituitary adenomas and other neuroendocrine tumors. J. Clin. Endocrinol. Metab. 83(10), 3624–3630 (1998). doi:10.1210/jcem.83.10.5210

    CAS  PubMed  Google Scholar 

  42. K. Kim, K. Arai, N. Sanno, R.Y. Osamura, A. Teramoto, T. Shibasaki, Ghrelin and growth hormone (GH) secretagogue receptor (GHSR) mRNA expression in human pituitary adenomas. Clin. Endocrinol. 54(6), 759–768 (2001)

    CAS  Google Scholar 

  43. M. Papotti, P. Cassoni, M. Volante, R. Deghenghi, G. Muccioli, E. Ghigo, Ghrelin-producing endocrine tumors of the stomach and intestine. J. Clin. Endocrinol. Metab. 86(10), 5052–5059 (2001). doi:10.1210/jcem.86.10.7918

    CAS  PubMed  Google Scholar 

  44. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, K. Kangawa, Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762), 656–660 (1999). doi:10.1038/45230

    CAS  PubMed  Google Scholar 

  45. E. Arvat, L. Di Vito, F. Broglio, M. Papotti, G. Muccioli, C. Dieguez, F.F. Casanueva, R. Deghenghi, F. Camanni, E. Ghigo, Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. J. Endocrinol. Invest. 23(8), 493–495 (2000)

    CAS  PubMed  Google Scholar 

  46. E. Arvat, M. Maccario, L. Di Vito, F. Broglio, A. Benso, C. Gottero, M. Papotti, G. Muccioli, C. Dieguez, F.F. Casanueva, R. Deghenghi, F. Camanni, E. Ghigo, Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J. Clin. Endocrinol. Metab. 86(3), 1169–1174 (2001). doi:10.1210/jcem.86.3.7314

    CAS  PubMed  Google Scholar 

  47. F. Broglio, A. Benso, C. Castiglioni, C. Gottero, F. Prodam, S. Destefanis, C. Gauna, A.J. van der Lely, R. Deghenghi, M. Bo, E. Arvat, E. Ghigo, The endocrine response to ghrelin as a function of gender in humans in young and elderly subjects. J. Clin. Endocrinol. Metab. 88(4), 1537–1542 (2003). doi:10.1210/jc.2002-021504

    CAS  PubMed  Google Scholar 

  48. A.M. Wren, L.J. Seal, M.A. Cohen, A.E. Brynes, G.S. Frost, K.G. Murphy, W.S. Dhillo, M.A. Ghatei, S.R. Bloom, Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86(12), 5992 (2001). doi:10.1210/jcem.86.12.8111

    CAS  PubMed  Google Scholar 

  49. D.E. Cummings, J. Overduin, Gastrointestinal regulation of food intake. J. Clin. Investig. 117(1), 13–23 (2007). doi:10.1172/JCI30227

    PubMed Central  CAS  PubMed  Google Scholar 

  50. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, I. Wakabayashi, Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 50(11), 2438–2443 (2001)

    CAS  PubMed  Google Scholar 

  51. M. Shintani, Y. Ogawa, K. Ebihara, M. Aizawa-Abe, F. Miyanaga, K. Takaya, T. Hayashi, G. Inoue, K. Hosoda, M. Kojima, K. Kangawa, K. Nakao, Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 50(2), 227–232 (2001)

    CAS  PubMed  Google Scholar 

  52. M. Tschop, D.L. Smiley, M.L. Heiman, Ghrelin induces adiposity in rodents. Nature 407(6806), 908–913 (2000). doi:10.1038/35038090

    CAS  PubMed  Google Scholar 

  53. N. Nagaya, M. Uematsu, M. Kojima, Y. Ikeda, F. Yoshihara, W. Shimizu, H. Hosoda, Y. Hirota, H. Ishida, H. Mori, K. Kangawa, Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 104(12), 1430–1435 (2001)

    CAS  PubMed  Google Scholar 

  54. N. Nagaya, K. Kangawa, Ghrelin improves left ventricular dysfunction and cardiac cachexia in heart failure. Curr. Opin. Pharmacol. 3(2), 146–151 (2003)

    CAS  PubMed  Google Scholar 

  55. N. Nagaya, K. Kangawa, Ghrelin, a novel growth hormone-releasing peptide, in the treatment of chronic heart failure. Regul. Pept. 114(2–3), 71–77 (2003)

    CAS  PubMed  Google Scholar 

  56. Y. Lin, K. Matsumura, M. Fukuhara, S. Kagiyama, K. Fujii, M. Iida, Ghrelin acts at the nucleus of the solitary tract to decrease arterial pressure in rats. Hypertension 43(5), 977–982 (2004). doi:10.1161/01.HYP.0000122803.91559.55

    CAS  PubMed  Google Scholar 

  57. D. Baatar, K. Patel, D.D. Taub, The effects of ghrelin on inflammation and the immune system. Mol. Cell. Endocrinol. 340(1), 44–58 (2011). doi:10.1016/j.mce.2011.04.019

    CAS  PubMed  Google Scholar 

  58. N. Pandya, R. DeMott-Friberg, C.Y. Bowers, A.L. Barkan, C.A. Jaffe, Growth hormone (GH)-releasing peptide-6 requires endogenous hypothalamic GH-releasing hormone for maximal GH stimulation. J. Clin. Endocrinol. Metab. 83(4), 1186–1189 (1998). doi:10.1210/jcem.83.4.4711

    CAS  PubMed  Google Scholar 

  59. E. Ghigo, G. Aimaretti, E. Arvat, F. Camanni, Growth hormone-releasing hormone combined with arginine or growth hormone secretagogues for the diagnosis of growth hormone deficiency in adults. Endocrine 15(1), 29–38 (2001). doi:10.1385/ENDO:15:1:029

    CAS  PubMed  Google Scholar 

  60. E. Ghigo, E. Arvat, G. Muccioli, F. Camanni, Growth hormone-releasing peptides. Eur. J. Endocrinol. 136(5), 445–460 (1997)

    CAS  PubMed  Google Scholar 

  61. V. Guerlavais, D. Boeglin, D. Mousseaux, C. Oiry, A. Heitz, R. Deghenghi, V. Locatelli, A. Torsello, C. Ghe, F. Catapano, G. Muccioli, J.C. Galleyrand, J.A. Fehrentz, J. Martinez, New active series of growth hormone secretagogues. J. Med. Chem. 46(7), 1191–1203 (2003). doi:10.1021/jm020985q

    CAS  PubMed  Google Scholar 

  62. R. Deghenghi, M.M. Cananzi, A. Torsello, C. Battisti, E.E. Muller, V. Locatelli, GH-releasing activity of Hexarelin, a new growth hormone releasing peptide, in infant and adult rats. Life Sci. 54(18), 1321–1328 (1994)

    CAS  PubMed  Google Scholar 

  63. A.V. Kaisary, W.G. Bowsher, D.A. Gillatt, J.B. Anderson, P.R. Malone, B.P. Imbimbo, Pharmacodynamics of a long acting depot preparation of avorelin in patients with prostate cancer. Avorelin Study Group. J. Urol. 162(6), 2019–2023 (1999)

    CAS  PubMed  Google Scholar 

  64. M. Korbonits, G. Kaltsas, L.A. Perry, A.B. Grossman, J.P. Monson, G.M. Besser, P.J. Trainer, Hexarelin as a test of pituitary reserve in patients with pituitary disease. Clin. Endocrinol. 51(3), 369–375 (1999)

    CAS  Google Scholar 

  65. M. Gasperi, G. Aimaretti, G. Scarcello, G. Corneli, C. Cosci, E. Arvat, E. Martino, E. Ghigo, Low dose hexarelin and growth hormone (GH)-releasing hormone as a diagnostic tool for the diagnosis of GH deficiency in adults: comparison with insulin-induced hypoglycemia test. J. Clin. Endocrinol. Metab. 84(8), 2633–2637 (1999). doi:10.1210/jcem.84.8.5904

    CAS  PubMed  Google Scholar 

  66. Z. Laron, J. Frenkel, R. Deghenghi, S. Anin, B. Klinger, A. Silbergeld, Intranasal administration of the GHRP hexarelin accelerates growth in short children. Clin. Endocrinol. 43(5), 631–635 (1995)

    CAS  Google Scholar 

  67. V. Locatelli, G. Rossoni, F. Schweiger, A. Torsello, V. De Gennaro Colonna, M. Bernareggi, R. Deghenghi, E.E. Muller, F. Berti, Growth hormone-independent cardioprotective effects of hexarelin in the rat. Endocrinology 140(9), 4024–4031 (1999). doi:10.1210/endo.140.9.6948

    CAS  PubMed  Google Scholar 

  68. G. Rossoni, V. Locatelli, V. De GennaroColonna, A. Torsello, F. Schweiger, M. Boghen, M. Nilsson, M. Bernareggi, E.E. Muller, F. Berti, Growth hormone and hexarelin prevent endothelial vasodilator dysfunction in aortic rings of the hypophysectomized rat. J. Cardiovasc. Pharmacol. 34(3), 454–460 (1999)

    CAS  PubMed  Google Scholar 

  69. V. Bodart, M. Febbraio, A. Demers, N. McNicoll, P. Pohankova, A. Perreault, T. Sejlitz, E. Escher, R.L. Silverstein, D. Lamontagne, H. Ong, CD36 mediates the cardiovascular action of growth hormone-releasing peptides in the heart. Circ. Res. 90(8), 844–849 (2002)

    CAS  PubMed  Google Scholar 

  70. A. Rodrigue-Way, A. Demers, H. Ong, A. Tremblay, A growth hormone-releasing peptide promotes mitochondrial biogenesis and a fat burning-like phenotype through scavenger receptor CD36 in white adipocytes. Endocrinology 148(3), 1009–1018 (2007). doi:10.1210/en.2006-0975

    CAS  PubMed  Google Scholar 

  71. H. Zhao, G. Liu, Q. Wang, L. Ding, H. Cai, H. Jiang, Z. Xin, Effect of ghrelin on human endothelial cells apoptosis induced by high glucose. Biochem. Biophys. Res. Commun. 362(3), 677–681 (2007). doi:10.1016/j.bbrc.2007.08.021

    CAS  PubMed  Google Scholar 

  72. M.S. Kim, C.Y. Yoon, P.G. Jang, Y.J. Park, C.S. Shin, H.S. Park, J.W. Ryu, Y.K. Pak, J.Y. Park, K.U. Lee, S.Y. Kim, H.K. Lee, Y.B. Kim, K.S. Park, The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes. Mol. Endocrinol. 18(9), 2291–2301 (2004). doi:10.1210/me.2003-0459

    CAS  PubMed  Google Scholar 

  73. W.G. Li, D. Gavrila, X. Liu, L. Wang, S. Gunnlaugsson, L.L. Stoll, M.L. McCormick, C.D. Sigmund, C. Tang, N.L. Weintraub, Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109(18), 2221–2226 (2004). doi:10.1161/01.CIR.0000127956.43874.F2

    CAS  PubMed  Google Scholar 

  74. I. Johansson, S. Destefanis, N.D. Aberg, M.A. Aberg, K. Blomgren, C. Zhu, C. Ghe, R. Granata, E. Ghigo, G. Muccioli, P.S. Eriksson, J. Isgaard, Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells. Endocrinology 149(5), 2191–2199 (2008). doi:10.1210/en.2007-0733

    CAS  PubMed  Google Scholar 

  75. W. Wang, D. Zhang, H. Zhao, Y. Chen, Y. Liu, C. Cao, L. Han, G. Liu, Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line. Regul. Pept. 161(1–3), 43–50 (2010). doi:10.1016/j.regpep.2009.12.017

    CAS  PubMed  Google Scholar 

  76. C.E. Wrede, L.M. Dickson, M.K. Lingohr, I. Briaud, C.J. Rhodes, Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J. Biol. Chem. 277(51), 49676–49684 (2002). doi:10.1074/jbc.M208756200

    CAS  PubMed  Google Scholar 

  77. J. Buteau, W. El-Assaad, C.J. Rhodes, L. Rosenberg, E. Joly, M. Prentki, Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47(5), 806–815 (2004). doi:10.1007/s00125-004-1379-6

    CAS  PubMed  Google Scholar 

  78. E. Karaskov, C. Scott, L. Zhang, T. Teodoro, M. Ravazzola, A. Volchuk, Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147(7), 3398–3407 (2006). doi:10.1210/en.2005-1494

    CAS  PubMed  Google Scholar 

  79. D. Kawamori, H. Kaneto, Y. Nakatani, T.A. Matsuoka, M. Matsuhisa, M. Hori, Y. Yamasaki, The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 281(2), 1091–1098 (2006). doi:10.1074/jbc.M508510200

    CAS  PubMed  Google Scholar 

  80. G. Solinas, W. Naugler, F. Galimi, M.S. Lee, M. Karin, Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proc. Natl. Acad. Sci. USA 103(44), 16454–16459 (2006). doi:10.1073/pnas.0607626103

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Y. Zhang, B. Ying, L. Shi, H. Fan, D. Yang, D. Xu, Y. Wei, X. Hu, Y. Zhang, X. Zhang, T. Wang, D. Liu, L. Dou, G. Chen, F. Jiang, F. Wen, Ghrelin inhibit cell apoptosis in pancreatic beta cell line HIT-T15 via mitogen-activated protein kinase/phosphoinositide 3-kinase pathways. Toxicology 237(1–3), 194–202 (2007). doi:10.1016/j.tox.2007.05.013

    CAS  PubMed  Google Scholar 

  82. R. Granata, F. Settanni, L. Biancone, L. Trovato, R. Nano, F. Bertuzzi, S. Destefanis, M. Annunziata, M. Martinetti, F. Catapano, C. Ghe, J. Isgaard, M. Papotti, E. Ghigo, G. Muccioli, Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3′,5′-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology 148(2), 512–529 (2007). doi:10.1210/en.2006-0266

    CAS  PubMed  Google Scholar 

  83. W. Wang, Y. Liu, Y. Chen, C. Cao, Y. Xiang, D. Zhang, L. Han, H. Zhao, G. Liu, Inhibition of Foxo1 mediates protective effects of ghrelin against lipotoxicity in MIN6 pancreatic beta-cells. Peptides 31(2), 307–314 (2010). doi:10.1016/j.peptides.2009.11.011

    PubMed  Google Scholar 

  84. T. Irako, T. Akamizu, H. Hosoda, H. Iwakura, H. Ariyasu, K. Tojo, N. Tajima, K. Kangawa, Ghrelin prevents development of diabetes at adult age in streptozotocin-treated newborn rats. Diabetologia 49(6), 1264–1273 (2006). doi:10.1007/s00125-006-0226-3

    CAS  PubMed  Google Scholar 

  85. A.M. Ackermann, M. Gannon, Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J. Mol. Endocrinol. 38(1–2), 193–206 (2007). doi:10.1677/JME-06-0053

    CAS  PubMed  Google Scholar 

  86. R. Granata, M. Volante, F. Settanni, C. Gauna, C. Ghe, M. Annunziata, B. Deidda, I. Gesmundo, T. Abribat, A.J. van der Lely, G. Muccioli, E. Ghigo, M. Papotti, Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. J. Mol. Endocrinol. 45(1), 9–17 (2010). doi:10.1677/JME-09-0141

    CAS  PubMed  Google Scholar 

  87. R. Granata, F. Settanni, M. Julien, R. Nano, G. Togliatto, A. Trombetta, D. Gallo, L. Piemonti, M.F. Brizzi, T. Abribat, A.J. van Der Lely, E. Ghigo, Des-acyl ghrelin fragments and analogues promote survival of pancreatic beta-cells and human pancreatic islets and prevent diabetes in streptozotocin-treated rats. J. Med. Chem. 55(6), 2585–2596 (2012). doi:10.1021/jm201223m

    CAS  PubMed  Google Scholar 

  88. S. Bonner-Weir, D.F. Trent, G.C. Weir, Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J. Clin. Investig. 71(6), 1544–1553 (1983)

    PubMed Central  CAS  PubMed  Google Scholar 

  89. R. Rafaeloff, G.L. Pittenger, S.W. Barlow, X.F. Qin, B. Yan, L. Rosenberg, W.P. Duguid, A.I. Vinik, Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J. Clin. Investig. 99(9), 2100–2109 (1997). doi:10.1172/JCI119383

    PubMed Central  CAS  PubMed  Google Scholar 

  90. D. Gu, N. Sarvetnick, Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118(1), 33–46 (1993)

    CAS  PubMed  Google Scholar 

  91. J.F. List, J.F. Habener, Glucagon-like peptide 1 agonists and the development and growth of pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 286(6), E875–E881 (2004). doi:10.1152/ajpendo.00007.2004

    CAS  PubMed  Google Scholar 

  92. F. Sanvito, P.L. Herrera, J. Huarte, A. Nichols, R. Montesano, L. Orci, J.D. Vassalli, TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120(12), 3451–3462 (1994)

    CAS  PubMed  Google Scholar 

  93. Y.Q. Zhang, H. Zhang, A. Maeshima, H. Kurihara, J. Miyagawa, T. Takeuchi, I. Kojima, Up-regulation of the expression of activins in the pancreatic duct by reduction of the beta-cell mass. Endocrinology 143(9), 3540–3547 (2002). doi:10.1210/en.2002-220089

    CAS  PubMed  Google Scholar 

  94. J.T. Hill, T.L. Mastracci, C. Vinton, M.L. Doyle, K.R. Anderson, Z.L. Loomis, J.M. Schrunk, A.D. Minic, K.R. Prabakar, A. Pugliese, Y. Sun, R.G. Smith, L. Sussel, Ghrelin is dispensable for embryonic pancreatic islet development and differentiation. Regul. Pept. 157(1–3), 51–56 (2009). doi:10.1016/j.regpep.2009.02.013

    PubMed Central  CAS  PubMed  Google Scholar 

  95. N. Wierup, S. Yang, R.J. McEvilly, H. Mulder, F. Sundler, Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J. Histochem. Cytochem. 52(3), 301–310 (2004)

    CAS  PubMed  Google Scholar 

  96. M. Kerem, B. Salman, S. Ozsoy, H. Pasaoglu, A. Bedirli, R. Haziroglu, T.U. Yilmaz, Exogenous ghrelin enhances endocrine and exocrine regeneration in pancreatectomized rats. J. Gastrointest. Surg. 13(4), 775–783 (2009). doi:10.1007/s11605-008-0778-2

    PubMed  Google Scholar 

  97. J.H. Nielsen, E.D. Galsgaard, A. Moldrup, B.N. Friedrichsen, N. Billestrup, J.A. Hansen, Y.C. Lee, C. Carlsson, Regulation of beta-cell mass by hormones and growth factors. Diabetes 50(Suppl 1), S25–S29 (2001)

    CAS  PubMed  Google Scholar 

  98. X. Ma, Y. Lin, L. Lin, G. Qin, F.A. Pereira, M.W. Haymond, N.F. Butte, Y. Sun, Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice. Am. J. Physiol. Endocrinol. Metab. 303(3), E422–E431 (2012). doi:10.1152/ajpendo.00576.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  99. A. Salehi, C. de la Dornonville Cour, R. Hakanson, I. Lundquist, Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regul. Pept. 118(3), 143–150 (2004). doi:10.1016/j.regpep.2003.12.001

    CAS  PubMed  Google Scholar 

  100. H.M. Lee, G. Wang, E.W. Englander, M. Kojima, G.H. Greeley Jr, Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 143(1), 185–190 (2002). doi:10.1210/endo.143.1.8602

    CAS  PubMed  Google Scholar 

  101. K. Spiegel, E. Tasali, R. Leproult, N. Scherberg, E. Van Cauter, Twenty-four-hour profiles of acylated and total ghrelin: relationship with glucose levels and impact of time of day and sleep. J. Clin. Endocrinol. Metab. 96(2), 486–493 (2011). doi:10.1210/jc.2010-1978

    PubMed Central  CAS  PubMed  Google Scholar 

  102. A.C. Heijboer, A.M. van den Hoek, E.T. Parlevliet, L.M. Havekes, J.A. Romijn, H. Pijl, E.P. Corssmit, Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice. Diabetologia 49(4), 732–738 (2006). doi:10.1007/s00125-006-0138-2

    CAS  PubMed  Google Scholar 

  103. K.M. Heppner, J. Tong, H. Kirchner, R. Nass, M.H. Tschop, The ghrelin O-acyltransferase-ghrelin system: a novel regulator of glucose metabolism. Curr. Opin. Endocrinol. Diabetes Obes. 18(1), 50–55 (2011). doi:10.1097/MED.0b013e328341e1d3

    CAS  PubMed  Google Scholar 

  104. H. Iwakura, K. Hosoda, C. Son, J. Fujikura, T. Tomita, M. Noguchi, H. Ariyasu, K. Takaya, H. Masuzaki, Y. Ogawa, T. Hayashi, G. Inoue, T. Akamizu, H. Hosoda, M. Kojima, H. Itoh, S. Toyokuni, K. Kangawa, K. Nakao, Analysis of rat insulin II promoter-ghrelin transgenic mice and rat glucagon promoter-ghrelin transgenic mice. J. Biol. Chem. 280(15), 15247–15256 (2005). doi:10.1074/jbc.M411358200

    CAS  PubMed  Google Scholar 

  105. C. Gauna, F.M. Meyler, J.A. Janssen, P.J. Delhanty, T. Abribat, P. van Koetsveld, L.J. Hofland, F. Broglio, E. Ghigo, A.J. van der Lely, Administration of acylated ghrelin reduces insulin sensitivity, whereas the combination of acylated plus unacylated ghrelin strongly improves insulin sensitivity. J. Clin. Endocrinol. Metab. 89(10), 5035–5042 (2004). doi:10.1210/jc.2004-0363

    CAS  PubMed  Google Scholar 

  106. L. Pacifico, E. Poggiogalle, F. Costantino, C. Anania, F. Ferraro, F. Chiarelli, C. Chiesa, Acylated and nonacylated ghrelin levels and their associations with insulin resistance in obese and normal weight children with metabolic syndrome. Eur. J. Endocrinol. 161(6), 861–870 (2009). doi:10.1530/EJE-09-0375

    CAS  PubMed  Google Scholar 

  107. L. Huang, Y. Tong, F. Zhang, Q. Yang, D. Li, S. Xie, Y. Li, H. Cao, L. Tang, X. Zhang, N. Tong, Increased acyl ghrelin but decreased total ghrelin and unacyl ghrelin in Chinese Han people with impaired fasting glucose combined with impaired glucose tolerance. Peptides 60, 86–94 (2014). doi:10.1016/j.peptides.2014.07.022

    CAS  PubMed  Google Scholar 

  108. P. Lucidi, G. Murdolo, C. Di Loreto, A. De Cicco, N. Parlanti, C. Fanelli, F. Santeusanio, G.B. Bolli, P. De Feo, Ghrelin is not necessary for adequate hormonal counterregulation of insulin-induced hypoglycemia. Diabetes 51(10), 2911–2914 (2002)

    CAS  PubMed  Google Scholar 

  109. M.F. Saad, B. Bernaba, C.M. Hwu, S. Jinagouda, S. Fahmi, E. Kogosov, R. Boyadjian, Insulin regulates plasma ghrelin concentration. J. Clin. Endocrinol. Metab. 87(8), 3997–4000 (2002). doi:10.1210/jcem.87.8.8879

    CAS  PubMed  Google Scholar 

  110. Q. Wang, C. Liu, A. Uchida, J.C. Chuang, A. Walker, T. Liu, S. Osborne-Lawrence, B.L. Mason, C. Mosher, E.D. Berglund, J.K. Elmquist, J.M. Zigman, Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol. Metab. 3(1), 64–72 (2014). doi:10.1016/j.molmet.2013.10.001

    PubMed Central  CAS  PubMed  Google Scholar 

  111. V. De Gennaro-Colonna, G. Rossoni, D. Cocchi, A.E. Rigamonti, F. Berti, E.E. Muller, Endocrine, metabolic and cardioprotective effects of hexarelin in obese Zucker rats. J. Endocrinol. 166(3), 529–536 (2000)

    PubMed  Google Scholar 

  112. R.M. Frieboes, H. Murck, P. Maier, T. Schier, F. Holsboer, A. Steiger, Growth hormone-releasing peptide-6 stimulates sleep, growth hormone, ACTH and cortisol release in normal man. Neuroendocrinology 61(5), 584–589 (1995)

    CAS  PubMed  Google Scholar 

  113. R.G. Clark, G.B. Thomas, D.L. Mortensen, W.B. Won, Y.H. Ma, E.E. Tomlinson, K.M. Fairhall, I.C. Robinson, Growth hormone secretagogues stimulate the hypothalamic-pituitary-adrenal axis and are diabetogenic in the Zucker diabetic fatty rat. Endocrinology 138(10), 4316–4323 (1997). doi:10.1210/endo.138.10.5424

    CAS  PubMed  Google Scholar 

  114. Y. Date, M. Nakazato, S. Hashiguchi, K. Dezaki, M.S. Mondal, H. Hosoda, M. Kojima, K. Kangawa, T. Arima, H. Matsuo, T. Yada, S. Matsukura, Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 51(1), 124–129 (2002)

    CAS  PubMed  Google Scholar 

  115. E. Adeghate, A.S. Ponery, Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats. J. Neuroendocrinol. 14(7), 555–560 (2002)

    CAS  PubMed  Google Scholar 

  116. K. Dezaki, H. Hosoda, M. Kakei, S. Hashiguchi, M. Watanabe, K. Kangawa, T. Yada, Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2 + signaling in beta-cells: implication in the glycemic control in rodents. Diabetes 53(12), 3142–3151 (2004)

    CAS  PubMed  Google Scholar 

  117. K. Dezaki, H. Sone, M. Koizumi, M. Nakata, M. Kakei, H. Nagai, H. Hosoda, K. Kangawa, T. Yada, Blockade of pancreatic islet-derived ghrelin enhances insulin secretion to prevent high-fat diet-induced glucose intolerance. Diabetes 55(12), 3486–3493 (2006). doi:10.2337/db06-0878

    CAS  PubMed  Google Scholar 

  118. Y. Wang, M. Nishi, A. Doi, T. Shono, Y. Furukawa, T. Shimada, H. Furuta, H. Sasaki, K. Nanjo, Ghrelin inhibits insulin secretion through the AMPK-UCP2 pathway in beta cells. FEBS Lett. 584(8), 1503–1508 (2010). doi:10.1016/j.febslet.2010.02.069

    CAS  PubMed  Google Scholar 

  119. E.M. Egido, J. Rodriguez-Gallardo, R.A. Silvestre, J. Marco, Inhibitory effect of ghrelin on insulin and pancreatic somatostatin secretion. Eur. J. Endocrinol. 146(2), 241–244 (2002)

    CAS  PubMed  Google Scholar 

  120. M. Colombo, S. Gregersen, J. Xiao, K. Hermansen, Effects of ghrelin and other neuropeptides (CART, MCH, orexin A and B, and GLP-1) on the release of insulin from isolated rat islets. Pancreas 27(2), 161–166 (2003)

    CAS  PubMed  Google Scholar 

  121. C. Gauna, P.J. Delhanty, M.O. van Aken, J.A. Janssen, A.P. Themmen, L.J. Hofland, M. Culler, F. Broglio, E. Ghigo, A.J. van der Lely, Unacylated ghrelin is active on the INS-1E rat insulinoma cell line independently of the growth hormone secretagogue receptor type 1a and the corticotropin releasing factor 2 receptor. Mol. Cell. Endocrinol. 251(1–2), 103–111 (2006). doi:10.1016/j.mce.2006.03.040

    CAS  PubMed  Google Scholar 

  122. M.K. Reimer, G. Pacini, B. Ahren, Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 144(3), 916–921 (2003). doi:10.1210/en.2002-220819

    CAS  PubMed  Google Scholar 

  123. S.K. Chacko, M.W. Haymond, Y. Sun, J.C. Marini, P.J. Sauer, X. Ma, A.L. Sunehag, Effect of ghrelin on glucose regulation in mice. Am. J. Physiol. Endocrinol. Metab. 302(9), E1055–E1062 (2012). doi:10.1152/ajpendo.00445.2011

    CAS  PubMed  Google Scholar 

  124. R.M. Kiewiet, M.O. van Aken, K. van der Weerd, P. Uitterlinden, A.P. Themmen, L.J. Hofland, Y.B. de Rijke, P.J. Delhanty, E. Ghigo, T. Abribat, A.J. van der Lely, Effects of acute administration of acylated and unacylated ghrelin on glucose and insulin concentrations in morbidly obese subjects without overt diabetes. Eur. J. Endocrinol. 161(4), 567–573 (2009). doi:10.1530/EJE-09-0339

    CAS  PubMed  Google Scholar 

  125. J. Tong, R.L. Prigeon, H.W. Davis, M. Bidlingmaier, S.E. Kahn, D.E. Cummings, M.H. Tschop, D. D’Alessio, Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 59(9), 2145–2151 (2010). doi:10.2337/db10-0504

    PubMed Central  CAS  PubMed  Google Scholar 

  126. F. Tassone, F. Broglio, S. Destefanis, S. Rovere, A. Benso, C. Gottero, F. Prodam, R. Rossetto, C. Gauna, A.J. van der Lely, E. Ghigo, M. Maccario, Neuroendocrine and metabolic effects of acute ghrelin administration in human obesity. J. Clin. Endocrinol. Metab. 88(11), 5478–5483 (2003). doi:10.1210/jc.2003-030564

    CAS  PubMed  Google Scholar 

  127. F. Broglio, C. Gottero, A. Benso, F. Prodam, S. Destefanis, C. Gauna, M. Maccario, R. Deghenghi, A.J. van der Lely, E. Ghigo, Effects of ghrelin on the insulin and glycemic responses to glucose, arginine, or free fatty acids load in humans. J. Clin. Endocrinol. Metab. 88(9), 4268–4272 (2003). doi:10.1210/jc.2002-021940

    CAS  PubMed  Google Scholar 

  128. F. Broglio, A. Benso, C. Gottero, F. Prodam, C. Gauna, L. Filtri, E. Arvat, A.J. van der Lely, R. Deghenghi, E. Ghigo, Non-acylated ghrelin does not possess the pituitaric and pancreatic endocrine activity of acylated ghrelin in humans. J. Endocrinol. Invest. 26(3), 192–196 (2003)

    CAS  PubMed  Google Scholar 

  129. E.T. Vestergaard, C.B. Djurhuus, J. Gjedsted, S. Nielsen, N. Moller, J.J. Holst, J.O. Jorgensen, O. Schmitz, Acute effects of ghrelin administration on glucose and lipid metabolism. J. Clin. Endocrinol. Metab. 93(2), 438–444 (2008). doi:10.1210/jc.2007-2018

    CAS  PubMed  Google Scholar 

  130. E.T. Vestergaard, L.C. Gormsen, N. Jessen, S. Lund, T.K. Hansen, N. Moller, J.O. Jorgensen, Ghrelin infusion in humans induces acute insulin resistance and lipolysis independent of growth hormone signaling. Diabetes 57(12), 3205–3210 (2008). doi:10.2337/db08-0025

    PubMed Central  CAS  PubMed  Google Scholar 

  131. S.S. Damjanovic, N.M. Lalic, P.M. Pesko, M.S. Petakov, A. Jotic, D. Miljic, K.S. Lalic, L. Lukic, M. Djurovic, V.B. Djukic, Acute effects of ghrelin on insulin secretion and glucose disposal rate in gastrectomized patients. J. Clin. Endocrinol. Metab. 91(7), 2574–2581 (2006). doi:10.1210/jc.2005-1482

    CAS  PubMed  Google Scholar 

  132. E.T. Vestergaard, N. Moller, J.O. Jorgensen, Acute peripheral tissue effects of ghrelin on interstitial levels of glucose, glycerol, and lactate: a microdialysis study in healthy human subjects. Am. J. Physiol. Endocrinol. Metab. 304(12), E1273–E1280 (2013). doi:10.1152/ajpendo.00662.2012

    CAS  PubMed  Google Scholar 

  133. A.D. Patel, S.A. Stanley, K.G. Murphy, G.S. Frost, J.V. Gardiner, A.S. Kent, N.E. White, M.A. Ghatei, S.R. Bloom, Ghrelin stimulates insulin-induced glucose uptake in adipocytes. Regul. Pept. 134(1), 17–22 (2006). doi:10.1016/j.regpep.2005.11.001

    CAS  PubMed  Google Scholar 

  134. V. Ott, M. Fasshauer, A. Dalski, B. Meier, N. Perwitz, H.H. Klein, M. Tschop, J. Klein, Direct peripheral effects of ghrelin include suppression of adiponectin expression. Hormone Metab. Res. 34(11–12), 640–645 (2002). doi:10.1055/s-2002-38261

    CAS  Google Scholar 

  135. A. Demers, V. Caron, A. Rodrigue-Way, W. Wahli, H. Ong, A. Tremblay, A concerted kinase interplay identifies PPARgamma as a molecular target of ghrelin signaling in macrophages. PLoS ONE 4(11), e7728 (2009). doi:10.1371/journal.pone.0007728

    PubMed Central  PubMed  Google Scholar 

  136. R. Avallone, A. Demers, A. Rodrigue-Way, K. Bujold, D. Harb, S. Anghel, W. Wahli, S. Marleau, H. Ong, A. Tremblay, A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway. Mol. Endocrinol. 20(12), 3165–3178 (2006). doi:10.1210/me.2006-0146

    CAS  PubMed  Google Scholar 

  137. S. Marleau, D. Harb, K. Bujold, R. Avallone, K. Iken, Y. Wang, A. Demers, M.G. Sirois, M. Febbraio, R.L. Silverstein, A. Tremblay, H. Ong, EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E-deficient mice from developing atherosclerotic lesions. FASEB J. 19(13), 1869–1871 (2005). doi:10.1096/fj.04-3253fje

    CAS  PubMed  Google Scholar 

  138. M. Lehrke, M.A. Lazar, The many faces of PPARgamma. Cell 123(6), 993–999 (2005). doi:10.1016/j.cell.2005.11.026

    CAS  PubMed  Google Scholar 

  139. A. Chawla, W.A. Boisvert, C.H. Lee, B.A. Laffitte, Y. Barak, S.B. Joseph, D. Liao, L. Nagy, P.A. Edwards, L.K. Curtiss, R.M. Evans, P. Tontonoz, A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell 7(1), 161–171 (2001)

    CAS  PubMed  Google Scholar 

  140. A. Castrillo, P. Tontonoz, Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu. Rev. Cell Dev. Biol. 20, 455–480 (2004). doi:10.1146/annurev.cellbio.20.012103.134432

    CAS  PubMed  Google Scholar 

  141. A.C. Li, K.K. Brown, M.J. Silvestre, T.M. Willson, W. Palinski, C.K. Glass, Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Investig. 106(4), 523–531 (2000). doi:10.1172/JCI10370

    PubMed Central  CAS  PubMed  Google Scholar 

  142. A.R. Collins, W.P. Meehan, U. Kintscher, S. Jackson, S. Wakino, G. Noh, W. Palinski, W.A. Hsueh, R.E. Law, Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21(3), 365–371 (2001)

    CAS  PubMed  Google Scholar 

  143. A. Rodrigue-Way, V. Caron, S. Bilodeau, S. Keil, M. Hassan, E. Levy, G.A. Mitchell, A. Tremblay, Scavenger receptor CD36 mediates inhibition of cholesterol synthesis via activation of the PPARgamma/PGC-1alpha pathway and Insig1/2 expression in hepatocytes. FASEB J. 28(4), 1910–1923 (2014). doi:10.1096/fj.13-240168

    CAS  PubMed  Google Scholar 

  144. H. Hui, F. Dotta, U. Di Mario, R. Perfetti, Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J. Cell. Physiol. 200(2), 177–200 (2004). doi:10.1002/jcp.20021

    CAS  PubMed  Google Scholar 

  145. P. Maechler, C.B. Wollheim, Mitochondrial function in normal and diabetic beta-cells. Nature 414(6865), 807–812 (2001). doi:10.1038/414807a

    CAS  PubMed  Google Scholar 

  146. S. Krauss, C.Y. Zhang, L. Scorrano, L.T. Dalgaard, J. St-Pierre, S.T. Grey, B.B. Lowell, Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J. Clin. Investig. 112(12), 1831–1842 (2003). doi:10.1172/JCI19774

    PubMed Central  CAS  PubMed  Google Scholar 

  147. M. Anello, R. Lupi, D. Spampinato, S. Piro, M. Masini, U. Boggi, S. Del Prato, A.M. Rabuazzo, F. Purrello, P. Marchetti, Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48(2), 282–289 (2005). doi:10.1007/s00125-004-1627-9

    CAS  PubMed  Google Scholar 

  148. C.Y. Zhang, G. Baffy, P. Perret, S. Krauss, O. Peroni, D. Grujic, T. Hagen, A.J. Vidal-Puig, O. Boss, Y.B. Kim, X.X. Zheng, M.B. Wheeler, G.I. Shulman, C.B. Chan, B.B. Lowell, Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105(6), 745–755 (2001)

    CAS  PubMed  Google Scholar 

  149. Y. Teshima, M. Akao, S.P. Jones, E. Marban, Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ. Res. 93(3), 192–200 (2003). doi:10.1161/01.RES.0000085581.60197.4D

    CAS  PubMed  Google Scholar 

  150. Q. Zhang, W.D. Huang, X.Y. Lv, Y.M. Yang, Ghrelin protects H9c2 cells from hydrogen peroxide-induced apoptosis through NF-kappaB and mitochondria-mediated signaling. Eur. J. Pharmacol. 654(2), 142–149 (2011). doi:10.1016/j.ejphar.2010.12.011

    CAS  PubMed  Google Scholar 

  151. J. Chmielewska, D. Szczepankiewicz, M. Skrzypski, D. Kregielska, M.Z. Strowski, K.W. Nowak, Ghrelin but not obestatin regulates insulin secretion from INS1 beta cell line via UCP2-dependent mechanism. J. Biol. Regul. Homeost. Agents 24(4), 397–402 (2010)

    CAS  PubMed  Google Scholar 

  152. E. ElEter, A. AlTuwaijiri, H. Hagar, M. Arafa, In vivo and in vitro antioxidant activity of ghrelin: attenuation of gastric ischemic injury in the rat. J. Gastroenterol. Hepatol. 22(11), 1791–1799 (2007). doi:10.1111/j.1440-1746.2006.04696.x

    CAS  Google Scholar 

  153. B.D. Obay, E. Tasdemir, C. Tumer, H. Bilgin, M. Atmaca, Dose dependent effects of ghrelin on pentylenetetrazole-induced oxidative stress in a rat seizure model. Peptides 29(3), 448–455 (2008). doi:10.1016/j.peptides.2007.11.020

    CAS  PubMed  Google Scholar 

  154. A. Kawczynska-Drozdz, R. Olszanecki, J. Jawien, T. Brzozowski, W.W. Pawlik, R. Korbut, T.J. Guzik, Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats. Am. J. Hypertens. 19(7), 764–767 (2006). doi:10.1016/j.amjhyper.2006.01.022

    CAS  PubMed  Google Scholar 

  155. S.O. Iseri, G. Sener, B. Saglam, F. Ercan, N. Gedik, B.C. Yegen, Ghrelin alleviates biliary obstruction-induced chronic hepatic injury in rats. Regul. Pept. 146(1–3), 73–79 (2008). doi:10.1016/j.regpep.2007.08.014

    CAS  PubMed  Google Scholar 

  156. X. Zhang, C. Chen, A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy. Endocrine 41(3), 398–409 (2012). doi:10.1007/s12020-012-9623-1

    CAS  PubMed  Google Scholar 

  157. S.N. Verhagen, A.M. Wassink, Y. van der Graaf, Y. Gorter, P.M. Visseren, F.L. Visseren, S.S. Group, Insulin resistance increases the occurrence of new cardiovascular events in patients with manifest arterial disease without known diabetes. The SMART study. Cardiovasc. Diabetol. 10, 100 (2011). doi:10.1186/1475-2840-10-100

    PubMed Central  CAS  PubMed  Google Scholar 

  158. E. Bonora, G. Targher, G. Formentini, F. Calcaterra, S. Lombardi, F. Marini, L. Zenari, F. Saggiani, M. Poli, S. Perbellini, A. Raffaelli, L. Gemma, L. Santi, R.C. Bonadonna, M. Muggeo, The metabolic syndrome is an independent predictor of cardiovascular disease in Type 2 diabetic subjects. Prospective data from the Verona Diabetes Complications Study. Diabetic Med. 21(1), 52–58 (2004)

    CAS  PubMed  Google Scholar 

  159. A. Dei Cas, V. Spigoni, V. Ridolfi, M. Metra, Diabetes and chronic heart failure: from diabetic cardiomyopathy to therapeutic approach. Endocr. Metab. Immune Disord. Drug Targets 13(1), 38–50 (2013)

    CAS  PubMed  Google Scholar 

  160. L. van Heerebeek, N. Hamdani, M.L. Handoko, I. Falcao-Pires, R.J. Musters, K. Kupreishvili, A.J. Ijsselmuiden, C.G. Schalkwijk, J.G. Bronzwaer, M. Diamant, A. Borbely, J. van der Velden, G.J. Stienen, G.J. Laarman, H.W. Niessen, W.J. Paulus, Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117(1), 43–51 (2008). doi:10.1161/CIRCULATIONAHA.107.728550

    PubMed  Google Scholar 

  161. W.D. Gao, Y. Liu, E. Marban, Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation 94(10), 2597–2604 (1996)

    CAS  PubMed  Google Scholar 

  162. M. Zabalgoitia, M.F. Ismaeil, L. Anderson, F.A. Maklady, Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am. J. Cardiol. 87(3), 320–323 (2001)

    CAS  PubMed  Google Scholar 

  163. J.K. Boyer, S. Thanigaraj, K.B. Schechtman, J.E. Perez, Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am. J. Cardiol. 93(7), 870–875 (2004). doi:10.1016/j.amjcard.2003.12.026

    PubMed  Google Scholar 

  164. Y. Ma, L. Zhang, J.N. Edwards, B.S. Launikonis, C. Chen, Growth hormone secretagogues protect mouse cardiomyocytes from in vitro ischemia/reperfusion injury through regulation of intracellular calcium. PLoS ONE 7(4), e35265 (2012). doi:10.1371/journal.pone.0035265

    PubMed Central  CAS  PubMed  Google Scholar 

  165. F. Berti, E. Muller, V. De GennaroColonna, G. Rossoni, Hexarelin exhibits protective activity against cardiac ischaemia in hearts from growth hormone-deficient rats. Growth Hormone IGF Res. 8(Suppl B), 149–152 (1998)

    CAS  Google Scholar 

  166. S. Frascarelli, S. Ghelardoni, S. Ronca-Testoni, R. Zucchi, Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart. Basic Res. Cardiol. 98(6), 401–405 (2003). doi:10.1007/s00395-003-0434-7

    CAS  PubMed  Google Scholar 

  167. G. Bisi, V. Podio, M.R. Valetto, F. Broglio, G. Bertuccio, G. Del Rio, E. Arvat, M.F. Boghen, R. Deghenghi, G. Muccioli, H. Ong, E. Ghigo, Acute cardiovascular and hormonal effects of GH and hexarelin, a synthetic GH-releasing peptide, in humans. J. Endocrinol. Invest. 22(4), 266–272 (1999)

    CAS  PubMed  Google Scholar 

  168. X. Xu, F. Ding, J. Pang, X. Gao, R.K. Xu, W. Hao, J.M. Cao, C. Chen, Chronic administration of hexarelin attenuates cardiac fibrosis in the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol. 303(6), H703–H711 (2012). doi:10.1152/ajpheart.00257.2011

    CAS  PubMed  Google Scholar 

  169. L. Chang, Y. Ren, X. Liu, W.G. Li, J. Yang, B. Geng, N.L. Weintraub, C. Tang, Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart. J. Cardiovasc. Pharmacol. 43(2), 165–170 (2004)

    CAS  PubMed  Google Scholar 

  170. G.G. Zhang, X. Teng, Y. Liu, Y. Cai, Y.B. Zhou, X.H. Duan, J.Q. Song, Y. Shi, C.S. Tang, X.H. Yin, Y.F. Qi, Inhibition of endoplasm reticulum stress by ghrelin protects against ischemia/reperfusion injury in rat heart. Peptides 30(6), 1109–1116 (2009). doi:10.1016/j.peptides.2009.03.024

    CAS  PubMed  Google Scholar 

  171. V. De Gennaro Colonna, G. Rossoni, M. Bernareggi, E.E. Muller, F. Berti, Cardiac ischemia and impairment of vascular endothelium function in hearts from growth hormone-deficient rats: protection by hexarelin. Eur. J. Pharmacol. 334(2–3), 201–207 (1997)

    PubMed  Google Scholar 

  172. A. Torsello, E. Bresciani, G. Rossoni, R. Avallone, G. Tulipano, D. Cocchi, I. Bulgarelli, R. Deghenghi, F. Berti, V. Locatelli, Ghrelin plays a minor role in the physiological control of cardiac function in the rat. Endocrinology 144(5), 1787–1792 (2003). doi:10.1210/en.2002-221048

    CAS  PubMed  Google Scholar 

  173. Y. Mao, T. Tokudome, I. Kishimoto, K. Otani, M. Miyazato, K. Kangawa, One dose of oral hexarelin protects chronic cardiac function after myocardial infarction. Peptides 56, 156–162 (2014). doi:10.1016/j.peptides.2014.04.004

    CAS  PubMed  Google Scholar 

  174. M. Aragno, R. Mastrocola, C. Ghe, E. Arnoletti, E. Bassino, G. Alloatti, G. Muccioli, Obestatin induced recovery of myocardial dysfunction in type 1 diabetic rats: underlying mechanisms. Cardiovasc. Diabetol. 11, 129 (2012). doi:10.1186/1475-2840-11-129

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Y. Mao, T. Tokudome, I. Kishimoto, K. Otani, H. Hosoda, C. Nagai, N. Minamino, M. Miyazato, K. Kangawa, Hexarelin treatment in male ghrelin knockout mice after myocardial infarction. Endocrinology 154(10), 3847–3854 (2013). doi:10.1210/en.2013-1291

    CAS  PubMed  Google Scholar 

  176. Y. Ma, L. Zhang, B.S. Launikonis, C. Chen, Growth hormone secretagogues preserve the electrophysiological properties of mouse cardiomyocytes isolated from in vitro ischemia/reperfusion heart. Endocrinology 153(11), 5480–5490 (2012). doi:10.1210/en.2012-1404

    CAS  PubMed  Google Scholar 

  177. J.J. Pang, R.K. Xu, X.B. Xu, J.M. Cao, C. Ni, W.L. Zhu, K. Asotra, M.C. Chen, C. Chen, Hexarelin protects rat cardiomyocytes from angiotensin II-induced apoptosis in vitro. Am. J. Physiol. Heart Circ. Physiol. 286(3), H1063–H1069 (2004). doi:10.1152/ajpheart.00648.2003

    CAS  PubMed  Google Scholar 

  178. T. Soeki, K. Koshiba, T. Niki, K. Kusunose, K. Yamaguchi, H. Yamada, T. Wakatsuki, M. Shimabukuro, K. Minakuchi, I. Kishimoto, K. Kangawa, M. Sata, Effect of ghrelin on autonomic activity in healthy volunteers. Peptides 62C, 1–5 (2014). doi:10.1016/j.peptides.2014.09.015

    Google Scholar 

  179. J. Isgaard, Ghrelin and the cardiovascular system. Endocrinol. Dev. 25, 83–90 (2013). doi:10.1159/000346056

    CAS  Google Scholar 

  180. T. Soeki, I. Kishimoto, D.O. Schwenke, T. Tokudome, T. Horio, M. Yoshida, H. Hosoda, K. Kangawa, Ghrelin suppresses cardiac sympathetic activity and prevents early left ventricular remodeling in rats with myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 294(1), H426–H432 (2008). doi:10.1152/ajpheart.00643.2007

    CAS  PubMed  Google Scholar 

  181. T. Soeki, T. Niki, E. Uematsu, S. Bando, T. Matsuura, K. Kusunose, T. Ise, Y. Ueda, N. Tomita, K. Yamaguchi, K. Koshiba, S. Yagi, D. Fukuda, Y. Taketani, T. Iwase, H. Yamada, T. Wakatsuki, M. Akaike, M. Shimabukuro, I. Kishimoto, K. Kangawa, M. Sata, Ghrelin protects the heart against ischemia-induced arrhythmias by preserving connexin-43 protein. Heart Vessel. 28(6), 795–801 (2013). doi:10.1007/s00380-013-0333-2

    Google Scholar 

  182. D.L. Lerner, K.A. Yamada, R.B. Schuessler, J.E. Saffitz, Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice. Circulation 101(5), 547–552 (2000)

    CAS  PubMed  Google Scholar 

  183. K.E. Wiley, A.P. Davenport, Comparison of vasodilators in human internal mammary artery: ghrelin is a potent physiological antagonist of endothelin-1. Br. J. Pharmacol. 136(8), 1146–1152 (2002). doi:10.1038/sj.bjp.0704815

    PubMed Central  CAS  PubMed  Google Scholar 

  184. N. Nagaya, K. Miyatake, M. Uematsu, H. Oya, W. Shimizu, H. Hosoda, M. Kojima, N. Nakanishi, H. Mori, K. Kangawa, Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J. Clin. Endocrinol. Metab. 86(12), 5854–5859 (2001). doi:10.1210/jcem.86.12.8115

    CAS  PubMed  Google Scholar 

  185. C.X. Huang, M.J. Yuan, H. Huang, G. Wu, Y. Liu, S.B. Yu, H.T. Li, T. Wang, Ghrelin inhibits post-infarct myocardial remodeling and improves cardiac function through anti-inflammation effect. Peptides 30(12), 2286–2291 (2009). doi:10.1016/j.peptides.2009.09.004

    CAS  PubMed  Google Scholar 

  186. G. Bisi, V. Podio, M.R. Valetto, F. Broglio, G. Bertuccio, G. Aimaretti, E. Pelosi, G. Del Rio, G. Muccioli, H. Ong, M.F. Boghen, R. Deghenghi, E. Ghigo, Cardiac effects of hexarelin in hypopituitary adults. Eur. J. Pharmacol. 381(1), 31–38 (1999)

    CAS  PubMed  Google Scholar 

  187. M. Imazio, M. Bobbio, F. Broglio, A. Benso, V. Podio, M.R. Valetto, G. Bisi, E. Ghigo, G.P. Trevi, GH-independent cardiotropic activities of hexarelin in patients with severe left ventricular dysfunction due to dilated and ischemic cardiomyopathy. Eur. J. Heart Fail. 4(2), 185–191 (2002)

    CAS  PubMed  Google Scholar 

  188. M. Enomoto, N. Nagaya, M. Uematsu, H. Okumura, E. Nakagawa, F. Ono, H. Hosoda, H. Oya, M. Kojima, K. Kanmatsuse, K. Kangawa, Cardiovascular and hormonal effects of subcutaneous administration of ghrelin, a novel growth hormone-releasing peptide, in healthy humans. Clin. Sci. 105(4), 431–435 (2003). doi:10.1042/CS20030184

    CAS  PubMed  Google Scholar 

  189. Y. Mao, T. Tokudome, I. Kishimoto, The cardiovascular action of hexarelin. J. Geriatr. Cardiol. 11(3), 253–258 (2014). doi:10.11909/j.issn.1671-5411.2014.03.007

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosa, R.M.H., Zhang, Z., Shao, R. et al. Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases. Endocrine 49, 307–323 (2015). https://doi.org/10.1007/s12020-015-0531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0531-z

Keywords

Navigation