Skip to main content

Advertisement

Log in

Role of the steroidogenic acute regulatory protein in health and disease

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Steroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e., the transport of the substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane. At the inner membrane, cytochrome P450 cholesterol side chain cleavage enzyme cleaves the cholesterol side chain to form the first steroid, pregnenolone, which is converted by a series of enzymes to various steroid hormones in specific tissues. Both basic and clinical evidence have demonstrated the crucial involvement of the STAR protein in the regulation of steroid biosynthesis. Multiple levels of regulation impinge on STAR action. Recent findings demonstrate that hormone-sensitive lipase, through its action on the hydrolysis of cholesteryl esters, plays an important role in regulating STAR expression and steroidogenesis which involve the liver X receptor pathway. Activation of the latter influences macrophage cholesterol efflux that is a key process in the prevention of atherosclerotic cardiovascular disease. Appropriate regulation of steroid hormones is vital for proper functioning of many important biological activities, which are also paramount for geriatric populations to live longer and healthier. This review summarizes the current level of understanding on tissue-specific and hormone-induced regulation of STAR expression and steroidogenesis, and provides insights into a number of cholesterol and/or steroid coupled physiological and pathophysiological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Azhar, E. Reaven, Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol. Cell. Endocrinol. 195, 1–26 (2002)

    Article  PubMed  CAS  Google Scholar 

  2. F.B. Kraemer, W.J. Shen, K. Harada, S. Patel, J. Osuga, S. Ishibashi, S. Azhar, Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol. Endocrinol. 18, 549–557 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. P.R. Manna, M.T. Dyson, D.M. Stocco, Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol. Hum. Reprod. 15, 321–333 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. P.R. Manna, D.M. Stocco, Regulation of the steroidogenic acute regulatory protein expression: functional and physiological consequences. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5, 93–108 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. D.M. Stocco, X. Wang, Y. Jo, P.R. Manna, Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol. 19, 2647–2659 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. W.L. Miller, H.S. Bose, Early steps in steroidogenesis: intracellular cholesterol trafficking. J. Lipid Res. 52, 2111–2135 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. A.F. Castillo, U. Orlando, K.E. Helfenberger, C. Poderoso, E.J. Podesta, The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol. Cell. Endocrinol. 408, 73–79 (2015)

    Article  PubMed  CAS  Google Scholar 

  8. D. Stocco, Star protein and the regulation of steroid hormone biosynthesis. Annu. Rev. Physiol. 63, 193–213 (2001)

    Article  PubMed  CAS  Google Scholar 

  9. M. Ascoli, F. Fanelli, D.L. Segaloff, The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23, 141–174 (2002)

    Article  PubMed  CAS  Google Scholar 

  10. W.L. Miller, StAR search–what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol. Endocrinol. 21, 589–601 (2007)

    Article  PubMed  CAS  Google Scholar 

  11. W.L. Miller, R.J. Auchus, The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. P.R. Manna, J. Cohen-Tannoudji, R. Counis, C.W. Garner, I. Huhtaniemi, F.B. Kraemer, D.M. Stocco, Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J. Biol. Chem. 288, 8505–8518 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. F. Arakane, C.B. Kallen, H. Watari, J.A. Foster, N.B. Sepuri, D. Pain, S.E. Stayrook, M. Lewis, G.L. Gerton, J.F. Strauss 3rd, The mechanism of action of steroidogenic acute regulatory protein (StAR). StAR acts on the outside of mitochondria to stimulate steroidogenesis. J. Biol. Chem. 273, 16339–16345 (1998)

    Article  PubMed  CAS  Google Scholar 

  14. I.P. Artemenko, D. Zhao, D.B. Hales, K.H. Hales, C.R. Jefcoate, Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J. Biol. Chem. 276, 46583–46596 (2001)

    Article  PubMed  CAS  Google Scholar 

  15. J. Liu, M.B. Rone, V. Papadopoulos, Protein–protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J. Biol. Chem. 281, 38879–38893 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. J. Fan, J. Liu, M. Culty, V. Papadopoulos, Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog. Lipid Res. 49, 218–234 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. M.B. Rone, A.S. Midzak, L. Issop, G. Rammouz, S. Jagannathan, J. Fan, X. Ye, J. Blonder, T. Veenstra, V. Papadopoulos, Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol. Endocrinol. 26, 1868–1882 (2012)

    Article  PubMed  CAS  Google Scholar 

  18. C. Poderoso, A. Duarte, M. Cooke, U. Orlando, V. Gottifredi, A.R. Solano, J.R. Lemos, E.J. Podesta, The spatial and temporal regulation of the hormonal signal. Role of mitochondria in the formation of a protein complex required for the activation of cholesterol transport and steroids synthesis. Mol. Cell. Endocrinol. 371, 26–33 (2013)

    Article  PubMed  CAS  Google Scholar 

  19. U. Orlando, M. Cooke, F. Cornejo Maciel, V. Papadopoulos, P. Maloberti, E.J. Podesta, Characterization of the mouse promoter region of the acyl-CoA synthetase 4 gene: role of Sp1 and CREB. Mol. Cell. Endocrinol. 369, 15–26 (2013)

    Article  PubMed  CAS  Google Scholar 

  20. J. Fan, E. Campioli, A. Midzak, M. Culty, V. Papadopoulos, Conditional steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. Proc. Natl. Acad. Sci. 112, 7261–7266 (2015)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. B.J. Clark, J. Wells, S.R. King, D.M. Stocco, The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 269, 28314–28322 (1994)

    PubMed  CAS  Google Scholar 

  22. D.M. Stocco, B.J. Clark, Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244 (1996)

    PubMed  CAS  Google Scholar 

  23. D. Lin, T. Sugawara, J.F. Strauss III, B.J. Clark, D.M. Stocco, P. Saenger, A. Rogol, W.L. Miller, Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267, 1828–1831 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. W.L. Miller, Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim. Biophys. Acta 1771, 663–676 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. H. Bose, V.R. Lingappa, W.L. Miller, Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417, 87–91 (2002)

    Article  PubMed  CAS  Google Scholar 

  26. H.S. Bose, T. Sugawara, J.F. Strauss 3rd, W.L. Miller, The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. International Congenital Lipoid Adrenal Hyperplasia Consortium. N. Engl. J. Med. 335, 1870–1878 (1996)

    Article  PubMed  CAS  Google Scholar 

  27. D.M. Stocco, Clinical disorders associated with abnormal cholesterol transport: mutations in the steroidogenic acute regulatory protein. Mol. Cell. Endocrinol. 191, 19–25 (2002)

    Article  PubMed  CAS  Google Scholar 

  28. S.R. King, A. Bhangoo, D.M. Stocco, Functional and physiological consequences of StAR deficiency: role in lipoid congenital adrenal hyperplasia. Endocr. Dev. 20, 47–53 (2011)

    PubMed  CAS  Google Scholar 

  29. R.J. Auchus, W.L. Miller, Congenital adrenal hyperplasia–more dogma bites the dust. J. Clin. Endocrinol. Metab. 97, 772–775 (2012)

    Article  PubMed  CAS  Google Scholar 

  30. K.M. Caron, S.C. Soo, W.C. Wetsel, D.M. Stocco, B.J. Clark, K.L. Parker, Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc. Natl. Acad. Sci. 94, 11540–11545 (1997)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. T. Hasegawa, L. Zhao, K.M. Caron, G. Majdic, T. Suzuki, S. Shizawa, H. Sasano, K.L. Parker, Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol. Endocrinol. 14, 1462–1471 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. H.S. Bose, S. Sato, J. Aisenberg, S.A. Shalev, N. Matsuo, W.L. Miller, Mutations in the steroidogenic acute regulatory protein (StAR) in six patients with congenital lipoid adrenal hyperplasia. J. Clin. Endocrinol. Metab. 85, 3636–3639 (2000)

    PubMed  CAS  Google Scholar 

  33. W.L. Miller, Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379, 62–73 (2013)

    Article  PubMed  CAS  Google Scholar 

  34. A.T. Slominski, P.R. Manna, R.C. Tuckey, On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids (2015). doi:10.1016/j.steroids.2015.04.006

    Google Scholar 

  35. P.R. Manna, A.T. Slominski, S.R. King, C.L. Stetson, D.M. Stocco, Synergistic activation of steroidogenic acute regulatory protein expression and steroid biosynthesis by retinoids: involvement of cAMP/PKA signaling. Endocrinology 155, 576–591 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. J. Liu, H. Li, V. Papadopoulos, PAP7, a PBR/PKA-RIalpha-associated protein: a new element in the relay of the hormonal induction of steroidogenesis. J. Steroid Biochem. Mol. Biol. 85, 275–283 (2003)

    Article  PubMed  CAS  Google Scholar 

  37. S. Ghosh, B. Zhao, J. Bie, J. Song, Macrophage cholesteryl ester mobilization and atherosclerosis. Vasc. Pharmacol. 52, 1–10 (2010)

    Article  CAS  Google Scholar 

  38. J. Osuga, S. Ishibashi, T. Oka, H. Yagyu, R. Tozawa, A. Fujimoto, F. Shionoiri, N. Yahagi, F.B. Kraemer, O. Tsutsumi, N. Yamada, Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl. Acad. Sci. 97, 787–792 (2000)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. F.B. Kraemer, W.J. Shen, Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J. Lipid Res. 43, 1585–1594 (2002)

    Article  PubMed  CAS  Google Scholar 

  40. B. Zhao, J. Bie, J. Wang, S.A. Marqueen, S. Ghosh, Identification of a novel intracellular cholesteryl ester hydrolase (carboxylesterase 3) in human macrophages: compensatory increase in its expression after carboxylesterase 1 silencing. Am. J. Physiol. Cell Physiol. 303, C427–C435 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. K. Sakai, M. Igarashi, D. Yamamuro, T. Ohshiro, S. Nagashima, M. Takahashi, B. Enkhtuvshin, M. Sekiya, H. Okazaki, J. Osuga, S. Ishibashi, Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis in murine macrophages. J. Lipid Res. 55, 2033–2040 (2014)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. J.J. Repa, K.E. Berge, C. Pomajzl, J.A. Richardson, H. Hobbs, D.J. Mangelsdorf, Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J. Biol. Chem. 277, 18793–18800 (2002)

    Article  PubMed  CAS  Google Scholar 

  43. C.L. Cummins, D.H. Volle, Y. Zhang, J.G. McDonald, B. Sion, A.M. Lefrancois-Martinez, F. Caira, G. Veyssiere, D.J. Mangelsdorf, J.M. Lobaccaro, Liver X receptors regulate adrenal cholesterol balance. J. Clin. Investig. 116, 1902–1912 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. D.H. Volle, J.M. Lobaccaro, Role of the nuclear receptors for oxysterols LXRs in steroidogenic tissues: beyond the “foie gras”, the steroids and sex? Mol. Cell. Endocrinol. 265–266, 183–189 (2007)

    Article  PubMed  CAS  Google Scholar 

  45. P.R. Manna, D.W. Eubank, E. Lalli, P. Sassone-Corsi, D.M. Stocco, Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J. Mol. Endocrinol. 30, 381–397 (2003)

    Article  PubMed  CAS  Google Scholar 

  46. P.R. Manna, D.M. Stocco, Crosstalk of CREB and Fos/Jun on a single cis-element: transcriptional repression of the steroidogenic acute regulatory protein gene. J. Mol. Endocrinol. 39, 261–277 (2007)

    Article  PubMed  CAS  Google Scholar 

  47. P.R. Manna, M.T. Dyson, D.M. Stocco, Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene. Mol. Cell. Endocrinol. 302, 1–11 (2009)

    Article  PubMed  CAS  Google Scholar 

  48. H.A. Lavoie, S.R. King, Transcriptional regulation of steroidogenic genes: sTARD1, CYP11A1 and HSD3B. Exp. Biol. Med. (Maywood) 234, 880–907 (2009)

    Article  CAS  Google Scholar 

  49. B.J. Clark, S.C. Soo, K.M. Caron, Y. Ikeda, K.L. Parker, D.M. Stocco, Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol. Endocrinol. 9, 1346–1355 (1995)

    PubMed  CAS  Google Scholar 

  50. S.R. King, T. Ronen-Fuhrmann, R. Timberg, B.J. Clark, J. Orly, D.M. Stocco, Steroid production after in vitro transcription, translation, and mitochondrial processing of protein products of complementary deoxyribonucleic acid for steroidogenic acute regulatory protein. Endocrinology 136, 5165–5176 (1995)

    PubMed  CAS  Google Scholar 

  51. P.R. Manna, S.P. Chandrala, S.R. King, Y. Jo, R. Counis, I.T. Huhtaniemi, D.M. Stocco, Molecular mechanisms of insulin-like growth factor-I mediated regulation of the steroidogenic acute regulatory protein in mouse leydig cells. Mol. Endocrinol. 20, 362–378 (2006)

    Article  PubMed  CAS  Google Scholar 

  52. B.J. Clark, R. Combs, K.H. Hales, D.B. Hales, D.M. Stocco, Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidogenesis in MA-10 mouse Leydig tumor cells. Endocrinology 138, 4893–4901 (1997)

    PubMed  CAS  Google Scholar 

  53. A.P. Mathieu, A. Fleury, L. Ducharme, P. Lavigne, J.G. LeHoux, Insights into steroidogenic acute regulatory protein (StAR)-dependent cholesterol transfer in mitochondria: evidence from molecular modeling and structure-based thermodynamics supporting the existence of partially unfolded states of StAR. J. Mol. Endocrinol. 29, 327–345 (2002)

    Article  PubMed  CAS  Google Scholar 

  54. A. Roostaee, E. Barbar, J.G. Lehoux, P. Lavigne, Cholesterol binding is a prerequisite for the activity of the steroidogenic acute regulatory protein (StAR). Biochem. J. 412, 553–562 (2008)

    Article  PubMed  CAS  Google Scholar 

  55. E. Barbar, J.G. Lehoux, P. Lavigne, Toward the NMR structure of StAR. Mol. Cell. Endocrinol. 300, 89–93 (2009)

    Article  PubMed  CAS  Google Scholar 

  56. B.J. Clark, V. Ranganathan, R. Combs, Steroidogenic acute regulatory protein expression is dependent upon post-translational effects of cAMP-dependent protein kinase A. Mol. Cell. Endocrinol. 173, 183–192 (2001)

    Article  PubMed  CAS  Google Scholar 

  57. L.K. Christenson, J.F. Strauss 3rd, Steroidogenic acute regulatory protein: an update on its regulation and mechanism of action. Arch. Med. Res. 32, 576–586 (2001)

    Article  PubMed  CAS  Google Scholar 

  58. N. Yivgi-Ohana, N. Sher, N. Melamed-Book, S. Eimerl, M. Koler, P.R. Manna, D.M. Stocco, J. Orly, Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta: alternative modes of cyclic adenosine 3′, 5′-monophosphate dependent and independent regulation. Endocrinology 150, 977–989 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. F. Arakane, S.R. King, Y. Du, C.B. Kallen, L.P. Walsh, H. Watari, D.M. Stocco, J.F. Strauss 3rd, Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J. Biol. Chem. 272, 32656–32662 (1997)

    Article  PubMed  CAS  Google Scholar 

  60. A. Fleury, A.P. Mathieu, L. Ducharme, D.B. Hales, J.G. LeHoux, Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR). J. Steroid Biochem. Mol. Biol. 91, 259–271 (2004)

    Article  PubMed  CAS  Google Scholar 

  61. P.R. Manna, S.P. Chandrala, Y. Jo, D.M. Stocco, cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation. J. Mol. Endocrinol. 37, 81–95 (2006)

    Article  PubMed  CAS  Google Scholar 

  62. P.R. Manna, M.T. Dyson, Y. Jo, D.M. Stocco, Role of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 in protein kinase A- and protein kinase C-mediated regulation of the steroidogenic acute regulatory protein expression in mouse Leydig tumor cells: mechanism of action. Endocrinology 150, 187–199 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. B.A. Cooke, Signal transduction involving cyclic AMP-dependent and cyclic AMP- independent mechanisms in the control of steroidogenesis. Mol. Cell. Endocrinol. 151, 25–35 (1999)

    Article  PubMed  CAS  Google Scholar 

  64. J.S. Richards, New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Mol. Endocrinol. 15, 209–218 (2001)

    PubMed  CAS  Google Scholar 

  65. P.R. Manna, L. Joshi, V.N. Reinhold, M.L. Aubert, N. Suganuma, K. Pettersson, I.T. Huhtaniemi, Synthesis, purification and structural and functional characterization of recombinant form of a common genetic variant of human luteinizing hormone. Hum. Mol. Genet. 11, 301–315 (2002)

    Article  PubMed  CAS  Google Scholar 

  66. D.B. Hales, Testicular macrophage modulation of Leydig cell steroidogenesis. J. Reprod. Immunol. 57, 3–18 (2002)

    Article  PubMed  CAS  Google Scholar 

  67. P.R. Manna, P. Pakarinen, T. El-Hefnawy, I.T. Huhtaniemi, Functional assessment of the calcium messenger system in cultured mouse Leydig tumor cells: regulation of human chorionic gonadotropin-induced expression of the steroidogenic acute regulatory protein. Endocrinology 140, 1739–1751 (1999)

    Article  PubMed  CAS  Google Scholar 

  68. X. Wang, L.P. Walsh, A.J. Reinhart, D.M. Stocco, The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J. Biol. Chem. 275, 20204–20209 (2000)

    Article  PubMed  CAS  Google Scholar 

  69. P.R. Manna, I.T. Huhtaniemi, X.J. Wang, D.W. Eubank, D.M. Stocco, Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse leydig tumor cells. Biol. Reprod. 67, 1393–1404 (2002)

    Article  PubMed  CAS  Google Scholar 

  70. F. Cornejo Maciel, P. Maloberti, I. Neuman, F. Cano, R. Castilla, F. Castillo, C. Paz, E.J. Podesta, An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones. J. Mol. Endocrinol. 34, 655–666 (2005)

    Article  PubMed  CAS  Google Scholar 

  71. J.Y. Park, Y.Q. Su, M. Ariga, E. Law, S.L. Jin, M. Conti, EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684 (2004)

    Article  PubMed  CAS  Google Scholar 

  72. M. Jamnongjit, A. Gill, S.R. Hammes, Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc. Natl. Acad. Sci. 102, 16257–16262 (2005)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. J. Nakae, T. Tajima, T. Sugawara, F. Arakane, K. Hanaki, T. Hotsubo, N. Igarashi, Y. Igarashi, T. Ishii, N. Koda, T. Kondo, H. Kohno, Y. Nakagawa, K. Tachibana, Y. Takeshima, K. Tsubouchi, J.F. Strauss 3rd, K. Fujieda, Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congenital lipoid adrenal hyperplasia. Hum. Mol. Genet. 6, 571–576 (1997)

    Article  PubMed  CAS  Google Scholar 

  74. E. Okuyama, N. Nishi, S. Onishi, S. Itoh, Y. Ishii, H. Miyanaka, K. Fujita, Y. Ichikawa, A novel splicing junction mutation in the gene for the steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. J. Clin. Endocrinol. Metab. 82, 2337–2342 (1997)

    PubMed  CAS  Google Scholar 

  75. W.L. Miller, Congenital lipoid adrenal hyperplasia: the human gene knockout for the steroidogenic acute regulatory protein. J. Mol. Endocrinol. 19, 227–240 (1997)

    Article  PubMed  CAS  Google Scholar 

  76. W.L. Miller, J.F. Strauss 3rd, Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR. J. Steroid. Biochem. Mol. Biol. 69, 131–141 (1999)

    Article  PubMed  CAS  Google Scholar 

  77. K. Fujieda, K. Okuhara, S. Abe, T. Tajima, T. Mukai, J. Nakae, Molecular pathogenesis of lipoid adrenal hyperplasia and adrenal hypoplasia congenita. J. Steroid Biochem. Mol. Biol. 85, 483–489 (2003)

    Article  PubMed  CAS  Google Scholar 

  78. M.K. Tee, D. Lin, T. Sugawara, J.A. Holt, Y. Guiguen, B. Buckingham, J.F. Strauss 3rd, W.L. Miller, T->A transversion 11 bp from a splice acceptor site in the human gene for steroidogenic acute regulatory protein causes congenial lipoid adrenal hyperplasia. Hum. Mol. Genet. 4, 2299–2305 (1995)

    Article  PubMed  CAS  Google Scholar 

  79. L.K. Christenson, J.F. Strauss 3rd, Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. Biochim. Biophys. Acta 1529, 175–187 (2000)

    Article  PubMed  CAS  Google Scholar 

  80. M.I. New, Inborn errors of adrenal steroidogenesis. Mol. Cell. Endocrinol. 211, 75–83 (2003)

    Article  PubMed  CAS  Google Scholar 

  81. N. Krone, J. Grotzinger, P.M. Holterhus, W.G. Sippell, H.P. Schwarz, F.G. Riepe, Congenital adrenal hyperplasia due to 11-hydroxylase deficiency–insights from two novel CYP11B1 mutations (p. M92X, p.R453Q). Horm. Res. 72, 281–286 (2009)

    Article  PubMed  CAS  Google Scholar 

  82. E.M. Brett, R.J. Auchus, Genetic forms of adrenal insufficiency. Endocr. Pract. 21, 395–399 (2015)

    Article  PubMed  Google Scholar 

  83. B.P. Hauffa, W.L. Miller, M.M. Grumbach, F.A. Conte, S.L. Kaplan, Congenital adrenal hyperplasia due to deficient cholesterol side-chain cleavage activity (20, 22-desmolase) in a patient treated for 18 years. Clin. Endocrinol. 23, 481–493 (1985)

    Article  CAS  Google Scholar 

  84. H.S. Bose, O.H. Pescovitz, W.L. Miller, Spontaneous feminization in a 46, XX female patient with congenital lipoid adrenal hyperplasia due to a homozygous frameshift mutation in the steroidogenic acute regulatory protein. J. Clin. Endocrinol. Metab. 82, 1511–1515 (1997)

    PubMed  CAS  Google Scholar 

  85. K. Fujieda, T. Tajima, J. Nakae, S. Sageshima, K. Tachibana, S. Suwa, T. Sugawara, J.F. Strauss 3rd, Spontaneous puberty in,46, XX subjects with congenital lipoid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (StAR) gene. J. Clin. Investig. 99, 1265–1271 (1997)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. M. Shima, A. Tanae, K. Miki, N. Katsumata, S. Matsumoto, S. Nakajima, T. Harada, T. Shinagawa, T. Tanaka, S. Okada, Mechanism for the development of ovarian cysts in patients with congenital lipoid adrenal hyperplasia. Eur. J. Endocrinol. 142, 274–279 (2000)

    Article  PubMed  CAS  Google Scholar 

  87. J.F. Strauss 3rd, T. Kishida, L.K. Christenson, T. Fujimoto, H. Hiroi, START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol. Cell. Endocrinol. 202, 59–65 (2000)

    Article  CAS  Google Scholar 

  88. T. Kishida, I. Kostetskii, Z. Zhang, F. Martinez, P. Liu, S.U. Walkley, N.K. Dwyer, E.J. Blanchette-Mackie, G.L. Radice, J.F. Strauss 3rd, Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism. J. Biol. Chem. 279, 19276–19285 (2004)

    Article  PubMed  CAS  Google Scholar 

  89. S.R. King, A.A. Matassa, E.K. White, L.P. Walsh, Y. Jo, R.M. Rao, D.M. Stocco, M.E. Reyland, Oxysterols regulate expression of the steroidogenic acute regulatory protein. J. Mol. Endocrinol. 32, 507–517 (2004)

    Article  PubMed  CAS  Google Scholar 

  90. P.R. Manna, Y. Jo, D.M. Stocco, Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. J. Endocrinol. 193, 53–63 (2007)

    Article  PubMed  CAS  Google Scholar 

  91. H.S. Bose, R.M. Whittal, Y. Ran, M. Bose, B.Y. Baker, W.L. Miller, StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochemistry 47, 2277–2288 (2008)

    Article  PubMed  CAS  Google Scholar 

  92. M. Esparza-Perusquia, S. Olvera-Sanchez, O. Flores-Herrera, H. Flores-Herrera, A. Guevara-Flores, J.P. Pardo, M.T. Espinosa-Garcia, F. Martinez, Mitochondrial proteases act on STARD3 to activate progesterone synthesis in human syncytiotrophoblast. Biochim. Biophys. Acta 1850, 107–117 (2015)

    Article  PubMed  CAS  Google Scholar 

  93. K.M. Caron, S.C. Soo, K.L. Parker, Targeted disruption of StAR provides novel insights into congenital adrenal hyperplasia. Endocr. Res. 24, 827–834 (1998)

    Article  PubMed  CAS  Google Scholar 

  94. S.E. Bulun, Z. Lin, G. Imir, S. Amin, M. Demura, B. Yilmaz, R. Martin, H. Utsunomiya, S. Thung, B. Gurates, M. Tamura, D. Langoi, S. Deb, Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol. Rev. 57, 359–383 (2005)

    Article  PubMed  CAS  Google Scholar 

  95. S.E. Bulun, E.R. Simpson, Aromatase expression in women’s cancers. Adv. Exp. Med. Biol. 630, 112–132 (2008)

    Article  PubMed  CAS  Google Scholar 

  96. S.E. Bulun, Z. Lin, H. Zhao, M. Lu, S. Amin, S. Reierstad, D. Chen, Regulation of aromatase expression in breast cancer tissue. Ann. N. Y. Acad. Sci. 1155, 121–131 (2009)

    Article  PubMed  CAS  Google Scholar 

  97. K.R. Holloway, A. Barbieri, S. Malyarchuk, M. Saxena, A. Nedeljkovic-Kurepa, M. Cameron Mehl, A. Wang, X. Gu, K. Pruitt, SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol. Endocrinol. 27, 480–490 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. E.R. Simpson, C. Clyne, G. Rubin, W.C. Boon, K. Robertson, K. Britt, C. Speed, M. Jones, Aromatase—a brief overview. Annu. Rev. Physiol. 64, 93–127 (2002)

    Article  PubMed  CAS  Google Scholar 

  99. S.E. Bulun, S. Yang, Z. Fang, B. Gurates, M. Tamura, S. Sebastian, Estrogen production and metabolism in endometriosis. Ann. N. Y. Acad. Sci. 955, 396–406 (2002)

    Article  Google Scholar 

  100. S.E. Bulun, Endometriosis. N. Engl. J. Med. 360, 268–279 (2009)

    Article  PubMed  CAS  Google Scholar 

  101. R.L. Barbieri, S. Missmer, Endometriosis and infertility: a cause-effect relationship? Ann. N. Y. Acad. Sci. 955, 396–406 (2002)

    Article  Google Scholar 

  102. D.W. Cramer, S.A. Missmer, The epidemiology of endometriosis. Ann. N. Y. Acad. Sci. 955, 396–406 (2002)

    Article  Google Scholar 

  103. R.B. Ness, D.W. Cramer, M.T. Goodman, S.K. Kjaer, K. Mallin, B.J. Mosgaard, D.M. Purdie, H.A. Risch, R. Vergona, A.H. Wu, Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am. J. Epidemiol. 155, 217–224 (2002)

    Article  PubMed  Google Scholar 

  104. J.J. Kim, T. Kurita, S.E. Bulun, Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr. Rev. 34, 130–162 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. S.J. Tsai, M.H. Wu, C.C. Lin, H.S. Sun, H.M. Chen, Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 86, 5765–5773 (2001)

    Article  PubMed  CAS  Google Scholar 

  106. S. Yang, Z. Fang, T. Suzuki, H. Sasano, J. Zhou, B. Gurates, M. Tamura, K. Ferrer, S. Bulun, Regulation of aromatase P450 expression in endometriotic and endometrial stromal cells by CCAAT/enhancer binding proteins (C/EBPs): decreased C/EBPbeta in endometriosis is associated with overexpression of aromatase. J. Clin. Endocrinol. Metab. 87, 2336–2345 (2002)

    PubMed  CAS  Google Scholar 

  107. E. Attar, S.E. Bulun, Aromatase and other steroidogenic genes in endometriosis: translational aspects. Hum. Reprod. Update 12, 49–56 (2006)

    Article  PubMed  CAS  Google Scholar 

  108. W.D. Nes, Y.O. Lukyanenko, Z.H. Jia, S. Quideau, W.N. Howald, T.K. Pratum, R.R. West, J.C. Hutson, Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology 141, 953–958 (2000)

    PubMed  CAS  Google Scholar 

  109. Y.O. Lukyanenko, J.J. Chen, J.C. Hutson, Production of 25-hydroxycholesterol by testicular macrophages and its effects on Leydig cells. Biol. Reprod. 64, 790–796 (2001)

    Article  PubMed  CAS  Google Scholar 

  110. J.A. Crow, K.L. Herring, S. Xie, A. Borazjani, P.M. Potter, M.K. Ross, Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids. Biochim. Biophys. Acta 1801, 31–41 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. E.S. Surrey, K.M. Silverberg, M.W. Surrey, W.B. Schoolcraft, Effect of prolonged gonadotropin-releasing hormone agonist therapy on the outcome of in vitro fertilization-embryo transfer in patients with endometriosis. Fertil. Steril. 78, 699–704 (2002)

    Article  PubMed  Google Scholar 

  112. V.M. Rice, Conventional medical therapies for endometriosis. Ann. N. Y. Acad. Sci. 955, 396–406 (2002)

    Article  Google Scholar 

  113. R.K. Ailawadi, S. Jobanputra, M. Kataria, B. Gurates, S.E. Bulun, Treatment of endometriosis and chronic pelvic pain with letrozole and norethindrone acetate: a pilot study. Fertil. Steril. 81, 290–296 (2004)

    Article  PubMed  CAS  Google Scholar 

  114. S.J. Yeaman, Hormone-sensitive lipase—new roles for an old enzyme. Biochem. J. 379, 11–22 (2004)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. K.R. Feingold, J.K. Shigenaga, M.R. Kazemi, C.M. McDonald, S.M. Patzek, A.S. Cross, A. Moser, C. Grunfeld, Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. Biol. 92, 829–839 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. C. Holm, T.G. Kirchgessner, K.L. Svenson, G. Fredrikson, S. Nilsson, C.G. Miller, J.E. Shively, C. Heinzmann, R.S. Sparkes, T. Mohandas et al., Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science 241, 1503–1506 (1988)

    Article  PubMed  CAS  Google Scholar 

  117. H. Li, M. Brochu, S.P. Wang, L. Rochdi, M. Cote, G. Mitchell, N. Gallo-Payet, Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 143, 3333–3340 (2002)

    Article  PubMed  CAS  Google Scholar 

  118. S. Chung, S.P. Wang, L. Pan, G. Mitchell, J. Trasler, L. Hermo, Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 142, 4272–4281 (2001)

    Article  PubMed  CAS  Google Scholar 

  119. S.P. Wang, S. Chung, K. Soni, H. Bourdages, L. Hermo, J. Trasler, G.A. Mitchell, Expression of human hormone-sensitive lipase (HSL) in postmeiotic germ cells confers normal fertility to HSL-deficient mice. Endocrinology 145, 5688–5693 (2004)

    Article  PubMed  CAS  Google Scholar 

  120. T. Osterlund, Structure-function relationships of hormone-sensitive lipase. Eur. J. Biochem. 268, 1899–1907 (2001)

    Article  PubMed  CAS  Google Scholar 

  121. C. Holm, Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 31, 1120–1124 (2003)

    Article  PubMed  CAS  Google Scholar 

  122. C. Krintel, M. Morgelin, D.T. Logan, C. Holm, Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 276, 4752–4762 (2009)

    Article  PubMed  CAS  Google Scholar 

  123. W.J. Shen, S. Patel, V. Natu, R. Hong, J. Wang, S. Azhar, F.B. Kraemer, Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J. Biol. Chem. 278, 43870–43876 (2003)

    Article  PubMed  CAS  Google Scholar 

  124. R.M. Rao, Y. Jo, S. Leers-Sucheta, H.S. Bose, W.L. Miller, S. Azhar, D.M. Stocco, Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Biol. Reprod. 68, 114–121 (2003)

    Article  PubMed  CAS  Google Scholar 

  125. S. Uda, S. Spolitu, F. Angius, M. Collu, S. Accossu, S. Banni, E. Murru, F. Sanna, B. Batetta, Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages. J. Lipid Res. 54, 3158–3169 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. J.T. Gwynne, J.F. Strauss 3rd, The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr. Rev. 3, 299–329 (1982)

    Article  PubMed  CAS  Google Scholar 

  127. M.S. Brown, J.L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986)

    Article  PubMed  CAS  Google Scholar 

  128. E.J. Blanchette-Mackie, Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim. Biophys. Acta 1486, 171–183 (2000)

    Article  PubMed  CAS  Google Scholar 

  129. H. Watari, E.J. Blanchette-Mackie, N.K. Dwyer, G. Sun, J.M. Glick, S. Patel, E.B. Neufeld, P.G. Pentchev, J.F. Strauss 3rd, NPC1-containing compartment of human granulosa-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenesis. Exp. Cell Res. 255, 56–66 (2000)

    Article  PubMed  CAS  Google Scholar 

  130. N.Y. Gevry, B.D. Murphy, The role and regulation of the Niemann-Pick C1 gene in adrenal steroidogenesis. Endocr. Res. 28, 403–412 (2002)

    Article  PubMed  CAS  Google Scholar 

  131. E. Rigamonti, L. Helin, S. Lestavel, A.L. Mutka, M. Lepore, C. Fontaine, M.A. Bouhlel, S. Bultel, J.C. Fruchart, E. Ikonen, V. Clavey, B. Staels, G. Chinetti-Gbaguidi, Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circ. Res. 97, 682–689 (2005)

    Article  PubMed  CAS  Google Scholar 

  132. K.M. Robertson, G.U. Schuster, K.R. Steffensen, O. Hovatta, S. Meaney, K. Hultenby, L.C. Johansson, K. Svechnikov, O. Soder, J.A. Gustafsson, The liver X receptor-{beta} is essential for maintaining cholesterol homeostasis in the testis. Endocrinology 146, 2519–2530 (2005)

    Article  PubMed  CAS  Google Scholar 

  133. D.H. Volle, K. Mouzat, R. Duggavathi, B. Siddeek, P. Dechelotte, B. Sion, G. Veyssiere, M. Benahmed, J.M. Lobaccaro, Multiple roles of the nuclear receptors for oxysterols liver X receptor to maintain male fertility. Mol. Endocrinol. 21, 1014–1027 (2007)

    Article  PubMed  CAS  Google Scholar 

  134. M. Clagett-Dame, H.F. DeLuca, The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 22, 347–381 (2002)

    Article  PubMed  CAS  Google Scholar 

  135. A. Molotkov, N. Molotkova, G. Duester, Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development 133, 1901–1910 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. A.W. See, M. Clagett-Dame, The temporal requirement for vitamin A in the developing eye: mechanism of action in optic fissure closure and new roles for the vitamin in regulating cell proliferation and adhesion in the embryonic retina. Dev. Biol. 325, 94–105 (2009)

    Article  PubMed  CAS  Google Scholar 

  137. N. Bushue, Y.J. Wan, Retinoid pathway and cancer therapeutics. Adv. Drug Deliv. Rev. 62, 1285–1298 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. C.R. Olson, C.V. Mello, Significance of vitamin A to brain function, behavior and learning. Mol. Nutr. Food Res. 54, 489–495 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  139. A. Slominski, B. Zbytek, G. Nikolakis, P.R. Manna, C. Skobowiat, M. Zmijewski, W. Li, Z. Janjetovic, A. Postlethwaite, C.C. Zouboulis, R.C. Tuckey, Steroidogenesis in the skin: implications for local immune functions. J. Steroid Biochem. Mol. Biol. 137, 107–123 (2010)

    Article  CAS  Google Scholar 

  140. D. Bonhomme, A.M. Minni, S. Alfos, P. Roux, E. Richard, P. Higueret, M.P. Moisan, V. Pallet, K. Touyarot, Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front. Behav. Neurosci. 8, 1–13 (2014)

    Article  CAS  Google Scholar 

  141. N. Srivastava, ATP binding cassette transporter A1–key roles in cellular lipid transport and atherosclerosis. Mol. Cell. Biochem. 237, 155–164 (2002)

    Article  PubMed  CAS  Google Scholar 

  142. G. Chinetti-Gbaguidi, E. Rigamonti, L. Helin, A.L. Mutka, M. Lepore, J.C. Fruchart, V. Clavey, E. Ikonen, S. Lestavel, B. Staels, Peroxisome proliferator-activated receptor alpha controls cellular cholesterol trafficking in macrophages. J. Lipid Res. 46, 2717–2725 (2005)

    Article  PubMed  CAS  Google Scholar 

  143. J.F. Oram, A.M. Vaughan, ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 99, 1031–1043 (2006)

    Article  PubMed  CAS  Google Scholar 

  144. S. Bultel, L. Helin, V. Clavey, G. Chinetti-Gbaguidi, E. Rigamonti, M. Colin, J.C. Fruchart, B. Staels, S. Lestavel, Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoproteins in primary human macrophages. Arterioscler. Thromb. Vasc. Biol. 28, 2288–2295 (2008)

    Article  PubMed  CAS  Google Scholar 

  145. Y. Yuan, P. Li, J. Ye, Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173–181 (2012)

    Article  PubMed  CAS  Google Scholar 

  146. M. Bodzioch, E. Orso, J. Klucken, T. Langmann, A. Bottcher, W. Diederich, W. Drobnik, S. Barlage, C. Buchler, M. Porsch-Ozcurumez, W.E. Kaminski, H.W. Hahmann, K. Oette, G. Rothe, C. Aslanidis, K.J. Lackner, G. Schmitz, The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 22, 347–351 (1999)

    Article  PubMed  CAS  Google Scholar 

  147. F. Tazoe, H. Yagyu, H. Okazaki, M. Igarashi, K. Eto, S. Nagashima, T. Inaba, H. Shimano, J. Osuga, S. Ishibashi, Induction of ABCA1 by overexpression of hormone-sensitive lipase in macrophages. Biochem. Biophys. Res. Commun. 376, 111–115 (2008)

    Article  PubMed  CAS  Google Scholar 

  148. Y. Ning, Q. Bai, H. Lu, X. Li, W.M. Pandak, F. Zhao, S. Chen, S. Ren, L. Yin, Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis 204, 0114–0120 (2009)

    Article  CAS  Google Scholar 

  149. J.M. Taylor, F. Borthwick, C. Bartholomew, A. Graham, Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI. Cardiovasc. Res. 86, 526–534 (2010)

    Article  PubMed  CAS  Google Scholar 

  150. A. Nohara, J. Kobayashi, H. Mabuchi, Retinoid X receptor heterodimer variants and cardiovascular risk factors. J. Atheroscler. Thromb. 16, 303–318 (2009)

    Article  PubMed  CAS  Google Scholar 

  151. M. Hozoji-Inada, Y. Munehira, K. Nagao, N. Kioka, K. Ueda, Liver X receptor beta (LXRbeta) interacts directly with ATP-binding cassette A1 (ABCA1) to promote high density lipoprotein formation during acute cholesterol accumulation. J. Biol. Chem. 286, 20117–20124 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  152. M. Ayaori, E. Yakushiji, M. Ogura, K. Nakaya, T. Hisada, H. Uto-Kondo, S. Takiguchi, Y. Terao, M. Sasaki, T. Komatsu, M. Iizuka, M. Yogo, Y. Uehara, H. Kagechika, T. Nakanishi, K. Ikewaki, Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages. Biochim. Biophys. Acta 1821, 561–572 (2012)

    Article  PubMed  CAS  Google Scholar 

  153. P.R. Manna, S.R. Sennoune, R. Martinez-Zaguilan, A.T. Slominski, K. Pruitt, Regulation of retinoid mediated cholesterol efflux involves liver X receptor activation in mouse macrophages. Biochem. Biophys. Res. Commun. 464, 312–317 (2015)

    Article  PubMed  CAS  Google Scholar 

  154. G. Chinetti, J.C. Fruchart, B. Staels, Transcriptional regulation of macrophage cholesterol trafficking by PPARalpha and LXR. Biochem. Soc. Trans. 34, 1128–1131 (2006)

    Article  PubMed  CAS  Google Scholar 

  155. N. Krone, N.A. Hanley, W. Arlt, Age-specific changes in sex steroid biosynthesis and sex development. Best. Pract. Res. Clin. Endocrinol. Metab. 21, 393–401 (2007)

    Article  PubMed  CAS  Google Scholar 

  156. H.S. Chahal, W.M. Drake, The endocrine system and aging. J. Pathol. 211, 173–180 (2007)

    Article  PubMed  CAS  Google Scholar 

  157. E. Makrantonaki, C.C. Zouboulis, Molecular mechanisms of skin aging: state of the art. Ann. N. Y. Acad. Sci. 1119, 40–50 (2007)

    Article  PubMed  CAS  Google Scholar 

  158. I. Huhtaniemi, A. Perheentupa, Diagnosis and therapy of male hormonal changes related to aging. Duodecim 125, 1099–1106 (2009)

    PubMed  Google Scholar 

  159. M.L. Traub, N. Santoro, Reproductive aging and its consequences for general health. Ann. N. Y. Acad. Sci. 1204, 179–187 (2010)

    Article  PubMed  Google Scholar 

  160. B. Manor, L.A. Lipsitz, Physiologic complexity and aging: implications for physical function and rehabilitation. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 287–293 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  161. T. Hertoghe, The “multiple hormone deficiency” theory of aging: is human senescence caused mainly by multiple hormone deficiencies? Ann. N. Y. Acad. Sci. 1057, 448–465 (2005)

    Article  PubMed  CAS  Google Scholar 

  162. A. Clegg, J. Young, S. Iliffe, M.O. Rikkert, K. Rockwood, Frailty in elderly people. Lancet 381, 752–762 (2013)

    Article  PubMed  Google Scholar 

  163. N.D. Shaw, S.S. Srouji, S.N. Histed, K.E. McCurnin, J.E. Hall, Aging attenuates the pituitary response to gonadotropin-releasing hormone. J. Clin. Endocrinol. Metab. 94, 3259–3264 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  164. I. Huhtaniemi, G. Forti, Male late-onset hypogonadism: pathogenesis, diagnosis and treatment. Nat. Rev. Urol. 8, 335–344 (2011)

    Article  PubMed  CAS  Google Scholar 

  165. J.D. Veldhuis, Changes in pituitary function with ageing and implications for patient care. Nat. Rev. Endocrinol. 9, 205–215 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  166. J.A. Janovick, M.D. Stewart, D. Jacob, L.D. Martin, J.M. Deng, C.A. Stewart, Y. Wang, A. Cornea, L. Chavali, S. Lopez, S. Mitalipov, E. Kang, H.S. Lee, P.R. Manna, D.M. Stocco, R.R. Behringer, P.M. Conn, Restoration of testis function in hypogonadotropic hypogonadal mice harboring a misfolded GnRHR mutant by pharmacoperone drug therapy. Proc. Natl. Acad. Sci. 110, 21030–21035 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  167. C. Feart, V. Pallet, C. Boucheron, D. Higueret, S. Alfos, L. Letenneur, J.F. Dartigues, P. Higueret, Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur. J. Endocrinol. 152, 449–458 (2005)

    Article  PubMed  CAS  Google Scholar 

  168. K. Ono, M. Yamada, Vitamin A and Alzheimer’s disease. Geriatr. Gerontol. Int. 12, 180–188 (2012)

    Article  PubMed  Google Scholar 

  169. M.V. Blagosklonny, J. Campisi, D.A. Sinclair, A. Bartke, M.A. Blasco, W.M. Bonner, V.A. Bohr, R.M. Brosh Jr, A. Brunet, R.A. Depinho, L.A. Donehower, C.E. Finch, T. Finkel, M. Gorospe, A.V. Gudkov, M.N. Hall, S. Hekimi, S.L. Helfand, J. Karlseder, C. Kenyon, G. Kroemer, V. Longo, A. Nussenzweig, H.D. Osiewacz, D.S. Peeper, T.A. Rando, K.L. Rudolph, P. Sassone-Corsi, M. Serrano, N.E. Sharpless, V.P. Skulachev, J.L. Tilly, J. Tower, E. Verdin, J. Vijg, Impact papers on aging in 2009. Aging 2, 111–121 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  170. M.L. Batrinos, The aging of the endocrine hypothalamus and its dependent endocrine glands. Hormones 11, 241–253 (2012)

    Article  PubMed  Google Scholar 

  171. N. Barzilai, D.M. Huffman, R.H. Muzumdar, A. Bartke, The critical role of metabolic pathways in aging. Diabetes 61, 1315–1322 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  172. D. Ortuno-Sahagun, M. Pallas, A.E. Rojas-Mayorquin, Oxidative stress in aging: advances in proteomic approaches. Oxid. Med. Cell. Longev. 2014, 1–18 (2014)

    Article  CAS  Google Scholar 

  173. P.Y. Liu, P.Y. Takahashi, P.D. Roebuck, A. Iranmanesh, J.D. Veldhuis, Age-specific changes in the regulation of LH-dependent testosterone secretion: assessing responsiveness to varying endogenous gonadotropin output in normal men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R721–R728 (2005)

    Article  PubMed  CAS  Google Scholar 

  174. X. Wang, D.M. Stocco, The decline in testosterone biosynthesis during male aging: a consequence of multiple alterations. Mol. Cell. Endocrinol. 238, 1–7 (2005)

    Article  PubMed  CAS  Google Scholar 

  175. E. Makrantonaki, P. Schonknecht, A.M. Hossini, E. Kaiser, M.M. Katsouli, J. Adjaye, J. Schroder, C.C. Zouboulis, Skin and brain age together: the role of hormones in the ageing process. Exp. Gerontol. 45, 801–813 (2010)

    Article  PubMed  CAS  Google Scholar 

  176. A.T. Slominski, M.A. Zmijewski, C. Skobowiat, B. Zbytek, R.M. Slominski, J.D. Steketee, Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, 1–115 (2012)

    Article  Google Scholar 

  177. M.C. Beattie, H. Chen, J. Fan, V. Papadopoulos, P. Miller, B.R. Zirkin, Aging and luteinizing hormone effects on reactive oxygen species production and DNA damage in rat leydig cells. Biol. Reprod. 88, 1–7 (2013)

    Article  CAS  Google Scholar 

  178. L. Zhou, M.C. Beattie, C.Y. Lin, J. Liu, K. Traore, V. Papadopoulos, B.R. Zirkin, H. Chen, Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reprod. Toxicol. 42, 95–101 (2013)

    Article  PubMed  CAS  Google Scholar 

  179. G. Vitale, S. Salvioli, C. Franceschi, Oxidative stress and the ageing endocrine system. Nat. Rev. Endocrinol. 9, 228–240 (2013)

    Article  PubMed  CAS  Google Scholar 

  180. Y. Kong, S.E. Trabucco, H. Zhang, Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip. Top. Gerontol. 39, 86–107 (2014)

    Article  PubMed  Google Scholar 

  181. B.A. Payne, P.F. Chinnery, Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta (2015). doi:10.1016/j.bbabio.2015.05.022

    PubMed  PubMed Central  Google Scholar 

  182. I. Rodrigues Siqueira, C. Fochesatto, I.L. da Silva Torres, C. Dalmaz, C. Alexandre Netto, Aging affects oxidative state in hippocampus, hypothalamus and adrenal glands of Wistar rats. Life Sci. 78, 271–278 (2005)

    Article  PubMed  CAS  Google Scholar 

  183. T. Diemer, J.A. Allen, K.H. Hales, D.B. Hales, Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144, 2882–2891 (2003)

    Article  PubMed  CAS  Google Scholar 

  184. A.S. Midzak, H. Chen, V. Papadopoulos, B.R. Zirkin, Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol. Cell. Endocrinol. 299, 23–31 (2009)

    Article  PubMed  CAS  Google Scholar 

  185. A. Slominski, J. Wortsman, Neuroendocrinology of the skin. Endocr. Rev. 21, 457–487 (2000)

    PubMed  CAS  Google Scholar 

  186. P.M. Elias, J.S. Wakefield, Therapeutic implications of a barrier-based pathogenesis of atopic dermatitis. Clin. Rev. Allergy Immunol. 41, 282–295 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  187. D.D. Bikle, Vitamin D and the skin: physiology and pathophysiology. Rev. Endocr. Metab. Disord. 13, 3–19 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  188. A. Slominski, J. Wortsman, D.J. Tobin, The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB. J. 19, 176–194 (2005)

    Article  PubMed  CAS  Google Scholar 

  189. A. Slominski, B. Zbytek, A. Szczesniewski, I. Semak, J. Kaminski, T. Sweatman, J. Wortsman, CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am. J. Physiol. Endocrinol. Metab. 288, E701–E706 (2005)

    Article  PubMed  CAS  Google Scholar 

  190. A.T. Slominski, M.A. Zmijewski, B. Zbytek, D.J. Tobin, T.C. Theoharides, J. Rivier, Key Role of CRF in the skin stress response system. Endocr. Rev. 34, 827–884 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  191. A.T. Slominski, M.A. Zmijewski, I. Semak, B. Zbytek, A. Pisarchik, W. Li, J. Zjawiony, R.C. Tuckey, Cytochromes P450 and skin cancer: role of local endocrine pathways. Anticancer. Agents Med. Chem. 14, 77–96 (2014)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  192. A. Haegebarth, H. Clevers, Wnt signaling, lgr5, and stem cells in the intestine and skin. Am. J. Pathol. 174, 715–721 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  193. N. Cirillo, S.S. Prime, Keratinocytes synthesize and activate cortisol. J. Cell. Biochem. 112, 1499–1505 (2011)

    Article  PubMed  CAS  Google Scholar 

  194. T. Inoue, Y. Miki, K. Abe, M. Hatori, M. Hosaka, Y. Kariya, S. Kakuo, T. Fujimura, A. Hachiya, S. Honma, S. Aiba, H. Sasano, Sex steroid synthesis in human skin in situ: the roles of aromatase and steroidogenic acute regulatory protein in the homeostasis of human skin. Mol. Cell. Endocrinol. 362, 19–28 (2012)

    Article  PubMed  CAS  Google Scholar 

  195. A. Slominski, J. Zjawiony, J. Wortsman, I. Semak, J. Stewart, A. Pisarchik, T. Sweatman, J. Marcos, C. Dunbar, C.R. Tuckey, A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. Eur. J. Biochem. 271, 4178–4188 (2004)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  196. P.M. Elias, D. Crumrine, A. Paller, M. Rodriguez-Martin, M.L. Williams, Pathogenesis of the cutaneous phenotype in inherited disorders of cholesterol metabolism: therapeutic implications for topical treatment of these disorders. Dermatoendocrinol 3, 100–106 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  197. S. Suomela, O. Elomaa, T. Skoog, R. Ala-aho, L. Jeskanen, J. Parssinen, L. Latonen, R. Grenman, J. Kere, V.M. Kahari, U. Saarialho-Kere, CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. PLoS ONE 4, e6030 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. R.F. Hannen, A.E. Michael, A. Jaulim, R. Bhogal, J.M. Burrin, M.P. Philpott, Steroid synthesis by primary human keratinocytes; implications for skin disease. Biochem. Biophys. Res. Commun. 404, 62–67 (2011)

    Article  PubMed  CAS  Google Scholar 

  199. A.T. Slominski, P.R. Manna, R.C. Tuckey, Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp. Dermatol. 23, 369–374 (2014)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  200. N. Vernet, C. Dennefeld, C. Rochette-Egly, M. Oulad-Abdelghani, P. Chambon, N.B. Ghyselinck, M. Mark, Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology 147, 96–110 (2006)

    Article  PubMed  CAS  Google Scholar 

  201. M. Clagett-Dame, D. Knutson, Vitamin A in reproduction and development. Nutrients 3, 385–428 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  202. J. Gericke, J. Ittensohn, J. Mihaly, S. Alvarez, R. Alvarez, D. Torocsik, A.R. de Lera, R. Ruhl, Regulation of retinoid-mediated signaling involved in skin homeostasis by RAR and RXR agonists/antagonists in mouse skin. PLoS ONE 8, e62643 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  203. S. Mukherjee, A. Date, V. Patravale, H.C. Korting, A. Roeder, G. Weindl, Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin. Interv. Aging 1, 327–348 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  204. J.P. Ortonne, Retinoid therapy of pigmentary disorders. Dermatol. Ther. 19, 280–288 (2006)

    Article  PubMed  Google Scholar 

  205. P.L. So, M.A. Fujimoto, E.H. Epstein Jr, Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis. Mol. Cancer Ther. 7, 1275–1284 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  206. J. Mihaly, A. Gamlieli, M. Worm, R. Ruhl, Decreased retinoid concentration and retinoid signalling pathways in human atopic dermatitis. Exp. Dermatol. 20, 326–330 (2011)

    Article  PubMed  CAS  Google Scholar 

  207. S.S. Chung, D.J. Wolgemuth, Role of retinoid signaling in the regulation of spermatogenesis. Cytogenet. Genome Res. 105, 189–202 (2004)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  208. M. Mark, N.B. Ghyselinck, P. Chambon, Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol. 46, 451–480 (2006)

    Article  PubMed  CAS  Google Scholar 

  209. J.K. Wickenheisser, V.L. Nelson-DeGrave, K.L. Hendricks, R.S. Legro, J.F. Strauss 3rd, J.M. McAllister, Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells. isolated from normal cycling women and women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90, 4858–4865 (2005)

    Article  PubMed  CAS  Google Scholar 

  210. P. Tucci, E. Cione, G. Genchi, Retinoic acid-induced testosterone production and retinoylation reaction are concomitant and exhibit a positive correlation in Leydig (TM-3) cells. J. Bioenerg. Biomembr. 40, 111–115 (2008)

    Article  PubMed  CAS  Google Scholar 

  211. K. Itoh, Y. Hiromori, N. Kato, I. Yoshida, N. Itoh, M. Ike, H. Nagase, K. Tanaka, T. Nakanishi, Placental steroidogenesis in rats is independent of signaling pathways induced by retinoic acids. Gen. Comp. Endocrinol. 163, 285–291 (2009)

    Article  PubMed  CAS  Google Scholar 

  212. E. Munetsuna, Y. Hojo, M. Hattori, H. Ishii, S. Kawato, A. Ishida, S.A. Kominami, T. Yamazaki, Retinoic acid stimulates 17beta-estradiol and testosterone synthesis in rat hippocampal slice cultures. Endocrinology 150, 4260–4269 (2009)

    Article  PubMed  CAS  Google Scholar 

  213. A. Kushida, H. Tamura, Retinoic acids induce neurosteroid biosynthesis in human glial GI-1 Cells via the induction of steroidogenic genes. J. Biochem. 146, 917–923 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank many co-workers and collaborators, and the studies of several research groups whose contributions helped in preparing this review. The cooperation of the Clinical Research Institute at Texas Tech University Health Sciences Center is greatly appreciated. This review was supported, in part, by NIH Grants CA155223 to KP and, AR052190, 1R01AR056666-01A2, and R21AR066505-01A1 to ATS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak R. Manna.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, P.R., Stetson, C.L., Slominski, A.T. et al. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 51, 7–21 (2016). https://doi.org/10.1007/s12020-015-0715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0715-6

Keywords

Navigation