Skip to main content

Advertisement

Log in

Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Research on an early detection of Mild Cognitive Impairment (MCI), a prodromal stage of Alzheimer’s Disease (AD), with resting-state functional Magnetic Resonance Imaging (rs-fMRI) has been of great interest for the last decade. Witnessed by recent studies, functional connectivity is a useful concept in extracting brain network features and finding biomarkers for brain disease diagnosis. However, it still remains challenging for the estimation of functional connectivity from rs-fMRI due to the inevitable high dimensional problem. In order to tackle this problem, we utilize a group sparse representation along with a structural equation model. Unlike the conventional group sparse representation method that does not explicitly consider class-label information, which can help enhance the diagnostic performance, in this paper, we propose a novel supervised discriminative group sparse representation method by penalizing a large within-class variance and a small between-class variance of connectivity coefficients. Thanks to the newly devised penalization terms, we can learn connectivity coefficients that are similar within the same class and distinct between classes, thus helping enhance the diagnostic accuracy. The proposed method also allows the learned common network structure to preserve the network specific and label-related characteristics. In our experiments on the rs-fMRI data of 37 subjects (12 MCI; 25 healthy normal control) with a cross-validation technique, we demonstrated the validity and effectiveness of the proposed method, showing the diagnostic accuracy of 89.19 % and the sensitivity of 0.9167.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Available at http://www.public.asu.edu/~jye02/Software/SLEP/index.htm http://www.public.asu.edu/~jye02/Software/SLEP/index.htm

  2. Available at http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

  3. Available at http://www.nitrc.org/projects/gift.

References

  • Alzheimer’s Association (2012). 2012 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 8(2), 131–168.

    Article  Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders - text revision (DSMIV-TR), 4th edn. American Psychiatric Association.

  • Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., Mathews, V.P., Kalnin, A., Lowe, M.J. (2005). Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biological Psychiatry, 57(10), 1079–1088.

    Article  PubMed  Google Scholar 

  • Bai, F., Watson, D.R., Yu, H., Shi, Y., Yuan, Y., Zhang, Z. (2009). Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Research, 1302, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Bansal, R., Staib, L.H., Laine, A.F., Hao, X., Xu, D., Liu, J., Weissman, M., Peterson, B.S. (2012). Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS ONE, 7(12), e50,698.

    Article  CAS  Google Scholar 

  • Basso, M., Yang, J., Warren, L., MacAvoy, M., Varma, P., Bronen, R., Dyck, C. (2006). Volumetry of amygdala and hippocampus and memory performance in Alzheimer’s disease. Psychiatry Research: Neuroimaging, 146(3), 251–261.

    Article  PubMed  Google Scholar 

  • Benton, A.L. (1962). The visual retention test as a constructional praxis task. Confinia Neurologica, 22, 141–155.

    Article  CAS  PubMed  Google Scholar 

  • Benton, A.L., & Hamsher, K. (1976). Multilingual aphasia examination manual. Iowa City: University of Iowa.

    Google Scholar 

  • Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Bokde, A.L.W., Lopez-Bayo, P., Meindl, T., Pechler, S., Born, C., Faltraco, F., Teipel, S.J., Mšller, H.J., Hampel, H. (2006). Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain, 129(5), 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  • Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 312, 186–198.

    Article  Google Scholar 

  • Calhoun, V., Adali, T., Pearlson, G., Pekar, J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151. doi:10.1002/hbm.1048.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, J.A., Sagar, H.J., Jordan, N., Harvey, N.S., Sullivan, E.V. (1991). Cognitive impairment in early, untreated parkinsons disease and its relationship to motor function. Brain, 114(5), 2095–2122.

    Article  PubMed  Google Scholar 

  • Craddock, R.C., III, P.E.H., Hu, X.P., Mayberg, H.S. (2009). Disease state prediction from resting state functional connectivity. Magnetic Resonance in Medicine, 62, 1619–1628.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai, W., Lopez, O., Carmichael, O., Becker, J., Kuller, L., Gach, H. (2009). Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology, 250(3), 856–866.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., Avants, B.B., Gee, J.C., Wang, J., Shen, D. (2007). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36(4), 1189–1199.

    Article  PubMed  Google Scholar 

  • Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). Mini-mental state. A practical method for grading the cognitive state of patient for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Essen, D.C.V., Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S. (1993). Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5–14.

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition, 2nd edn. Academic Press Professional.

  • Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101 (13), 4637–4642.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greicius, M.D., Flores, B.H., Menon, V., Glover, G.H., Solvason, H.B., Kenna, H., Reiss, A.L., Schatzberg, A.F. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.

    Article  PubMed Central  PubMed  Google Scholar 

  • Han, S.D., Arfanakis, K., Fleischman, D.A., Leurgans, S.E., Tuminello, E.R., Edmonds, E.C., Bennett, D.A. (2012). Functional connectivity variations in mild cognitive impairment: associations with cognitive function. Journal of the International Neuropsychological Society, 18, 39–48.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hyvärinen, A. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430. doi:10.1016/S0893-6080(00)00026-5.

    Article  PubMed  Google Scholar 

  • Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krzywinski, M.I., Schein, J.E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., Marra, M.A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, S., Eloyan, A., Joel, S., Mostofsky, S., Pekar, J., Bassett, S.S., Caffo, B. (2012). Analysis of group ICA-based connectivity measures from fMRI: application to Alzheimer’s disease. PLoS ONE, 7 (11), e49,340. doi:10.1371/journal.pone.0049340.

    Article  CAS  Google Scholar 

  • Li, S.J., Li, Z., Wu, G., Zhang, M.J., Franczak, M., Antuono, P.G. (2002). Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology, 225, 253–259.

    Article  PubMed  Google Scholar 

  • Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., Hao, Y. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 17, 209–213.

    Article  PubMed  Google Scholar 

  • Liu, J., Ji, S., Ye, J. (2009a). Multi-task feature learning via efficient l2,1-norm minimization. In Proceedings of the 25th conference on uncertainty in artificial intelligence (pp. 339–348).

  • Liu, J., Ji, S., Ye, J. (2009b). SLEP: sparse learning with efficient projections. Arizona State University.

  • Liu, M., Zhang, D., Shen, D. (2012). Ensemble sparse classification of Alzheimer’s disease. NeuroImage, 60(2), 1106–1116.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu, M., Zhang, D., Shen, D. (2013). The Alzheimer’s disease neuroimaging initiative: hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Human Brain Mapping, 35(4), 1305–1319.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynall, M.E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U., Bullmore, E.T. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30, 9477–9487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malinen, S., Vartiainen, N., Hlushchuk, Y., Koskinen, M., Ramkumar, P., Forss, N., Kalso, E., Hari, R. (2010). Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 107, 6493–6497.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marrelec, G., & Fransson, P. (2011). Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions. PLoS ONE, 6(4), e14,788.

    Article  CAS  Google Scholar 

  • Martinez, A.M., Mart’inez, A.M., Kak, A.C. (2001). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 228–233.

    Article  Google Scholar 

  • Matthews, C.G., & Klove, H. (1964). Instruction manual for the adult neuropsychology test battery. Madison, WI: University of Wisconsin Medical School.

    Google Scholar 

  • Mcintosh, A.R., Grady, C.L., Ungerleider, L.G., Haxby, J.V., Rapoport, S.I., Horwitzl, B. (1994). Network analysis of cortical visual pathways mapped with PET. Journal of Neuroscience, 14, 655–666.

    CAS  PubMed  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS–ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.

    Article  CAS  PubMed  Google Scholar 

  • Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., van Belle, G., Fillenbaum, G., Mellits, E.D., Clark, C. (1989). The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  • Mosconi, L., Tsui, W.H., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., Reiman, E.M., Holthoff, V., Kalbe, E., Sorbi, S., Diehl-Schmid, J., Perneczky, R., Clerici, F., Caselli, R., Beuthien-Baumann, B., Kurz, A., Minoshima, S., de Leon, M.J. (2008). Multicenter standardized 18f-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. The Journal of Nuclear Medicine, 49(3), 390–398.

    Article  Google Scholar 

  • Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? NeuroImage, 44(3), 893–905.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nesterov, Y. (2009). Introductory lectures on convex optimization: a basic course (applied optimization), 1st edn. Netherlands: Springer.

    Google Scholar 

  • Ng, B., & Abugharbieh, R. (2011). Generalized sparse regularization with application to fMRI brain decoding. In Proceedings of the 22nd international conference on Information processing in medical imaging, IPMI’11 (pp. 612–623).

  • Peng, H., Long, F., Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1285.

    Article  PubMed  Google Scholar 

  • Penny, W., Stephan, K., Mechelli, A., Friston, K. (2004). Modelling functional integration: a comparison of structural equation and dynamic causal models. NeuroImage, 23, Supplement 1, S264–S274.

    Article  Google Scholar 

  • Pereira, F., Mitchell, T., Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45, 199–209.

    Article  Google Scholar 

  • Rakotomamonjy, A. (2003). Variable selection using SVM based criteria. Journal of Machine Learning Research, 3, 1357–1370.

    Google Scholar 

  • Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276.

    Article  Google Scholar 

  • Reitan, R.M., & Wolfson, D. (1993). Halstead-Reitan neuropsychological test battery: theory and clinical interpretation. Tucson, AZ: Neuropsychological Press.

    Google Scholar 

  • Rombouts, S.A.R.B., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Human Brain Mapping, 26(4), 231–239.

    Article  PubMed  Google Scholar 

  • Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11), 1421–1439.

    Article  PubMed  Google Scholar 

  • Shipley, W.C. (1946). Institute of Living Scale. Los Angeles, Calif: Western Psychological Services.

    Google Scholar 

  • Smith, A. (1968). The symbol-digit modalities test: a neuropsychologic test of learning and other cerebral disorders. Learning Disorders, 3, 83–91.

    Google Scholar 

  • Sorg, C., Riedl, V., Mühlau, M., Calhoun, V.D., Läer, T.E.L., Drzezga, A., Kurz, H.F.A., Zimmer, C., Wohlschläger, A.M. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18,760–18,765.

    Article  CAS  Google Scholar 

  • Sporns, O., & Zwi, J.D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–161.

    Article  PubMed  Google Scholar 

  • Sporns, O., Toning, G., Edelman, G. (2000). Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10(2), 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Squire, L.R., & Zouzounis, J.A. (1988). Self-ratings of memory dysfunction: different findings in depression and amnesia. Journal of Clinical and Experimental Neuropsychology, 10(6), 727– 738.

    Article  CAS  PubMed  Google Scholar 

  • Stebbins, G., & Murphy, C. (2009). Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behavioural Neurology, 21(1), 39–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suk, H.I., & Lee, S.W. (2013). A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 286–299.

    Article  PubMed  Google Scholar 

  • Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4, e1000,100.

    Article  Google Scholar 

  • Thomann, P.A., Schlfer, C., Seidl, U., Santos, V.D., Essig, M., Schrder, J. (2008). The cerebellum in mild cognitive impairment and alzheimers disease a structural MRI study. Journal of Psychiatric Research, 42(14), 1198–1202.

    Article  PubMed  Google Scholar 

  • Tian, L., Kong, Y., Ren, J., Varoquaux, G., Zang, Y., Smith, S.M. (2013). Spatial vs. temporal features in ICA of resting-state fMRI - a quantitative and qualitative investigation in the context of response inhibition. PLoS ONE, 8(6), e66,572. doi: 10.1371/journal.pone.0066572 10.1371/journal.pone.0066572.

    Article  CAS  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267–288.

    Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Uddin, L.Q., Kelly, A.C., Biswal, B.B., Castellanos, F.X., Milham, M.P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625–637.

    Article  PubMed  Google Scholar 

  • Van Dijk, K.R.A., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties and optimization. Journal of Neurophysiology, 103, 297–321.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, Z., Nie, B., Li, D., Zhao, Z., Han, Y. (2012). Effect of acupuncture in mild cognitive impairment and Alzheimer disease: a functional MRI study. PLoS ONE, 7(8), e42,730.

    Article  CAS  Google Scholar 

  • Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T. (2007). Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Human Brain Mapping, 28(10), 967–978.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1981). Manual for the Wechsler adult intelligence scale - revised.

  • Wechsler, D. (1987). WMS-R: Wechsler memory scale-revised manual. The Psychological Corporation.

  • Wee, C.Y., Yap, P.T., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D. (2012). Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PLoS ONE, 7(5), e47,828.

    Article  Google Scholar 

  • Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D. (2011). Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage, 54(3), 1812–1822.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wee, C.Y., Yap, P.T., Zhang, D., Wang, L., Shen, D. (2012a). Constrained sparse functional connectivity networks for mci classification. In N. Ayache, H. Delingette, P. Golland, K. Mori (Eds.), Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012, Lecture Notes in Computer Science (Vol. 7511, pp. 212–219). Springer Berlin Heidelberg.

  • Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D. (2012b). Identification of mci individuals using structural and functional connectivity networks. NeuroImage, 59(3), 2045–2056.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu, L., Eichele, T., Calhoun, V.D. (2010). Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent eeg-fmri study. NeuroImage, 52(4), 1252–1260.

    Article  PubMed Central  PubMed  Google Scholar 

  • Youden, W.J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 68(1), 49–67.

    Article  Google Scholar 

  • Zhang, D., & Shen, D. (2012a). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease. NeuroImage, 59(2), 895– 907.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, D., & Shen, D. (2012b). Alzheimer’s Disease Neuroimaging, I.: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE, 7(3), e33,182.

    Article  CAS  Google Scholar 

  • Zhou, J., Liu, J., Narayan, V.A., Ye, J. (2012). Modeling disease progression via fused sparse group lasso. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1095–1103).

  • Zhou, L., Wang, Y., Li, Y., Yap, P.T., Shen, D. (2011). The Alzheimer’s disease neuroimaging, I.: hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS ONE, 6(7), e21,935.

    Article  CAS  Google Scholar 

  • Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H., Liu, Z., Jiang, T. (2007). Functional disintegration in paranoid Schizophrenia using resting-state fMRI. Schizophrenia Research, 97(1–3), 194–205.

    Article  PubMed  Google Scholar 

  • Zhuang, J., Peltier, S., He, S., LaConte, S., Hu, X. (2008). Mapping the connectivity with structural equation modeling in an fmri study of shape-from-motion task. NeuroImage, 42(2), 799– 806.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants EB006733, EB008374, EB009634, AG041721, MH100217, and AG042599, and also by ICT R&D program of MSIP/IITP (14-824-09-014, Basic Software Research in Human-level Lifelong Machine Learning) funded by the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen.

Appendices

Appendix A: Derivation of the Definitive Matrices

$$\begin{array}{@{}rcl@{}} &&\frac{1}{N^{c}}\sum\limits_{n~\text{s.t.}~l(n)=c}\left( \mathbf{w}_{r,g}(n)-\hat{w}_{r,g}^{c}\right)^{2}\\ &&{\kern.5pc}=\frac{1}{N^{c}}\sum\limits_{n~\text{s.t.}~l(n)=c}\left( \mathbf{w}_{r,g}{\mathbf{e}_{n}^{c}}-\mathbf{w}_{r,g}\mathbf{m}^{c}\right)^{2} \\ &&{\kern.5pc}=\frac{1}{N^{c}}\sum\limits_{n~\text{s.t.}~l(n)=c}\left\{ \mathbf{w}_{r,g}\left( {\mathbf{e}_{n}^{c}}-\mathbf{m}^{c}\right)\right\}\left\{ \mathbf{w}_{r,g}\left( {\mathbf{e}_{n}^{c}}-\mathbf{m}^{c}\right)\right\}^{T}\\ &&{\kern.5pc}=\frac{1}{N^{c}}\sum\limits_{n~\text{s.t.}~l(n)=c}\mathbf{w}_{r,g}\left( {\mathbf{e}_{n}^{c}}-\mathbf{m}^{c}\right)\left( {\mathbf{e}_{n}^{c}}-\mathbf{m}^{c}\right)^{T}\mathbf{w}^{T}_{r,g}\\ &&{\kern.5pc}=\frac{1}{N^{c}}\mathbf{w}_{r,g}\!\left(\sum\limits_{n~\text{s.t.}~l(n)=c} {\mathbf{e}_{n}^{c}}\mathbf{e}_{n}^{cT}\,-\,{\mathbf{e}_{n}^{c}}\mathbf{m}^{cT} \,-\,\mathbf{m}^{c}\mathbf{e}_{n}^{cT}\,+\,\mathbf{m}^{c}\mathbf{m}^{cT}\right)\mathbf{w}^{T}_{r,g}\\ &&{\kern.5pc}=\mathbf{w}_{r,g}\frac{1}{N^{c}}\left(\mathbf{I}^{c}-\mathbf{I}^{c}\mathbf{M}^{cT}-\mathbf{M}^{c}\mathbf{I}^{cT} +\mathbf{M}^{c}\mathbf{M}^{cT}\right)\mathbf{w}^{T}_{r,g}\\ &&{\kern.5pc}=\mathbf{w}_{r,g}K^{c}\mathbf{w}^{T}_{r,g} \end{array} $$
(15)

where N c is the number of training samples of the class c∈{+,−}, w r,g (n) denotes the n-th element of a vector w r,g , \(\hat {w}_{r,g}^{c}=\frac {1}{N^{c}}{\sum }_{n~\text {s.t.}~l(n)=c}\mathbf {w}_{r,g}(n)\), \({\mathbf {e}_{n}^{c}}\) is an N-dimensional unit vector with the n-th element 1 if l(n)=c, 0 otherwise, I is a square diagonal matrix with \(\mathbf {I}_{nn}^{c}=1\) if l(n)=c, 0 otherwise, M c is a square matrix with the columns set to \(\mathbf {m}^{c}=\left [ {m^{c}_{1}}, \cdots , {m^{c}_{n}}, \cdots , {m^{c}_{N}}\right ]^{T}\), and \({m^{c}_{n}}=\frac {1}{N^{c}}\) if l(n)=c, otherwise 0. \(K^{c}=\frac {1}{N^{c}}\left (\mathbf {I}^{c}-\mathbf {I}^{c}\mathbf {M}^{cT}- \mathbf {M}^{c}\mathbf {I}^{cT}+\mathbf {M}^{c}\mathbf {M}^{cT}\right )\).

$$\begin{array}{@{}rcl@{}} f_{W}(\mathbf{w}_{r,g})&=&\frac{1}{N^{+}}\sum\limits_{n~\text{s.t.}~l(n)=\text{`}+\text{'}}\left( \mathbf{w}_{r,g}(n)-\hat{w}_{r,g}^{+}\right)^{2} \\ &&+ \frac{1}{N^{-}}\sum\limits_{n~\text{s.t.}~l(n)=\text{`}-\text{'}}\left( \mathbf{w}_{r,g}(n)-\hat{w}_{r,g}^{-}\right)^{2}\\ &=&\mathbf{w}_{r,g}K^{+}\mathbf{w}^{T}_{r,g}+\mathbf{w}_{r,g}K^{-}\mathbf{w}^{T}_{r,g}\\ &=&\mathbf{w}_{r,g}\left(K^{+}+K^{-}\right)\mathbf{w}^{T}_{r,g}\\ &=&\mathbf{w}_{r,g}\hat{K}\mathbf{w}^{T}_{r,g}\\ &=&\mathbf{w}_{r,g}D_{1}{D_{1}^{T}}\mathbf{w}^{T}_{r,g}~~~~~~~~~~\text{(matrix decomposition)}\\ &=&\left(\mathbf{w}_{r,g}D_{1}\right)\left(\mathbf{w}_{r,g}D_{1}\right)^{T}\\ &=&\left\| \mathbf{w}_{r,g}D_{1}\right\|_{2}^{2} \end{array} $$
(16)
$$\begin{array}{@{}rcl@{}} f_{B}(\mathbf{w}_{r,g})&=&\left( \hat{w}_{r,g}^{+}-\hat{w}_{r,g}^{-}\right)^{2} \\ &=& \left( \mathbf{w}_{r,g}\mathbf{m}^{+}-\mathbf{w}_{r,g}\mathbf{m}^{-}\right)^{2} \\ &=& \left\{ \mathbf{w}_{r,g}\left(\mathbf{m}^{+}-\mathbf{m}^{-} \right)\right\}\left\{ \mathbf{w}_{r,g}\left(\mathbf{m}^{+}-\mathbf{m}^{-} \right)\right\}^{T}\\ &=&\mathbf{w}_{r,g}\left(\mathbf{m}^{+}-\mathbf{m}^{-} \right)\left(\mathbf{m}^{+}-\mathbf{m}^{-} \right)^{T}\mathbf{w}_{r,g}^{T}\\ &=&\left(\mathbf{w}_{r,g}D_{2} \right)\left(\mathbf{w}_{r,g}D_{2} \right)^{T}\\ &=&\left\|\mathbf{w}_{r,g}D_{2} \right\|_{2}^{2} \end{array} $$
(17)

where \(D_{2}=\left (\mathbf {m}^{+}-\mathbf {m}^{-} \right )\).

Appendix B: Proof of Two Stage Proximal Operator

Given a target proximal operator of

$$ \uppi(\mathbf{v})= \underset{\mathbf{w}} {\text{argmin}}\frac{1}{2} \left\| \mathbf-\mathbf{v}\right\|_{2}^{2} + {\uplambda}_{1}\left\|\mathbf{w} \right\|_{2} + {\uplambda}_{2}\left(\left\|\mathbf{w} D_{1}\right\|_{2}^{2} - \left\|\mathbf{w} D_{2}\right\|_{2}^{2}\right). $$
(18)

we can decompose it into two proximal operators as follows:

$$\begin{array}{@{}rcl@{}} {\uppi}_{1}(\mathbf{v})&=& \underset{\mathbf{w}} {\text{argmin}}\frac{1}{2} \left\| \mathbf{w}-\mathbf{v}\right\|_{2}^{2} + {\uplambda}_{1}\left\|\mathbf{w} \right\|_{2} \end{array} $$
(19)
$$\begin{array}{@{}rcl@{}} {\uppi}_{1}(\mathbf{v})&=& \underset{\mathbf{w}} {\text{argmin}}\frac{1}{2} \left\| \mathbf{w}\!-\!\mathbf{v}\right\|_{2}^{2} \!+\! \uplambda_{2}\left(\!\left\|\mathbf{w} D_{1}\right\|_{2}^{2} \!-\! \left\|\mathbf{w} D_{2}\right\|_{2}^{2}\!\right).\! \end{array} $$
(20)

Then it holds that

$$ \uppi(\mathbf{v})={\uppi}_{2}\left({\uppi}_{1}(\mathbf{v})\right). $$
(21)

The necessary and sufficient optimality conditions for Eqs. 18, 19 and 20 can be written as

$$\begin{array}{@{}rcl@{}} 0&\in& \uppi(\mathbf{v})-\mathbf{v}+{\uplambda}_{1}\partial g\left(\uppi(\mathbf{v})\right) + {\uplambda}_{2}\partial h\left(\uppi(\mathbf{v})\right) \end{array} $$
(22)
$$\begin{array}{@{}rcl@{}} 0&\in& {\uppi}_{1}(\mathbf{v})-\mathbf{v}+{\uplambda}_{1}\partial g\left(\uppi(\mathbf{v})\right) \end{array} $$
(23)
$$\begin{array}{@{}rcl@{}} 0&\in& {\uppi}_{2}\left({\uppi}_{1}(\mathbf{v})\right)-{\uppi}_{1}(\mathbf{v})+ {\uplambda}_{2}\partial h\left({\uppi}_{2}\left({\uppi}_{1}(\mathbf{v})\right)\right) \end{array} $$
(24)

where the partial derivatives are defined as

$$ \partial g(\mathbf{x})=\left\{ \begin{array}{c c} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}} & \text{if }\mathbf{x} \neq\mathbf{0}\\ \left\{\mathbf{y}:\|\mathbf{y}\|_{2}\leq1 \right\} & \text{otherwise} \end{array} \right. $$
(25)

and

$$ \partial h(\mathbf{x})=2\mathbf{x}\left(D_{1}{D_{1}^{T}}-D_{2}{D_{2}^{T}}\right). $$
(26)

It follows from Eqs. 24 and 26 that if π1(v)=0 then \({\uppi }_{2}\left ({\uppi }_{1}(\mathbf {v})\right )=0\). That is, the group sparsity π1(v) via the group lasso still holds for \({\uppi }_{2}\left ({\uppi }_{1}(\mathbf {v})\right )\). Therefore, we have

$$ 0\in {\uppi}_{2}\left({\uppi}_{1}(\mathbf{v})\right)-{\uppi}_{1}(\mathbf{v})+ {\uplambda}_{2}{\uppi}_{2}\left({\uppi}_{1}(\mathbf{v})\right)\left(D_{1}{D_{1}^{T}}-D_{2}{D_{2}^{T}}\right). $$
(27)

Since Eq. 18 has a unique solution, we can get Eq. 21 from Eqs. 22 and 27. Note that thanks to the matrix multiplication of \(D_{1}{D_{1}^{T}}\) in the partial derivative of Eq. 26, there is no need to explicitly decompose the matrix \(\hat {K}\) in Eq. 16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suk, HI., Wee, CY., Lee, SW. et al. Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis. Neuroinform 13, 277–295 (2015). https://doi.org/10.1007/s12021-014-9241-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9241-6

Keywords

Navigation