Skip to main content

Advertisement

Log in

Molecular Detection of PPARγ Rearrangements and Thyroid Carcinoma in Preoperative Fine-Needle Aspiration Biopsies

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

An Erratum to this article was published on 13 December 2008

An Erratum to this article was published on 13 December 2008

Abstract

The pathologic diagnosis of thyroid follicular tumors is difficult, particularly in preoperative fine-needle aspiration biopsies. To investigate whether the molecular diagnosis of PPARγ rearrangements can detect thyroid carcinomas in fine-needle aspiration biopsies, we performed interphase fluorescence in situ hybridization on 24 thyroid fine-needle aspiration and 17 follow-up thyroidectomy specimens. Two of the 24 fine-needle aspiration biopsies contained PPARγ rearrangements, and both were diagnosed suggestive of a thyroid follicular neoplasm by cytology. The two corresponding thyroidectomies each contained PPARγ rearrangements in all tumor cells and, both were diagnosed follicular-patterned thyroid carcinomas—one a follicular carcinoma and the other a follicular variant of papillary carcinoma, the latter by majority of expert endocrine pathologists. Our experiments demonstrate that PPARγ rearrangements can detect a subset of follicular-patterned thyroid carcinomas in preoperative thyroid fine-needle aspiration biopsies. The ultimate utility of mutations such as PPARγ rearrangements in diagnosis of thyroid carcinoma must be proven by direct correlation of mutation status with thyroid tumor biology and not just with thyroid tumor morphology, a subjective and imprecise marker of clinical behavior. The application of specific mutations to preoperative diagnosis of thyroid carcinoma is predicted to improve the accuracy and reduce the costs of treating patients with thyroid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med 126:226–31, 1997.

    PubMed  CAS  Google Scholar 

  2. Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med 154:1838–40, 1994. doi:10.1001/archinte.154.16.1838.

    Article  PubMed  CAS  Google Scholar 

  3. Bruneton JN, Balu-Maestro C, Marcy PY, Melia P, Mourou MY. Very high frequency (13 mhz) ultrasonographic examination of the normal neck: Detection of normal lymph nodes and thyroid nodules. J Ultrasound Med 13:87–90, 1994.

    PubMed  CAS  Google Scholar 

  4. DeLellis R, Lloyd R, Heitz P, Eng C. (eds.) Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press pp. 49–133, 2004.

    Google Scholar 

  5. Renshaw AA, Gould EW. Why there is the tendency to “overdiagnose” the follicular variant of papillary thyroid carcinoma. Am J Clin Pathol 117:19–21, 2002. doi:10.1309/RD07-39B9-QN1U-L6U0.

    Article  PubMed  Google Scholar 

  6. Chan JK. Strict criteria should be applied in the diagnosis of encapsulated follicular variant of papillary thyroid carcinoma. Am J Clin Pathol 117:16–8, 2002. doi:10.1309/P7QL-16KQ-QLF4-XW0M.

    Article  PubMed  Google Scholar 

  7. Saxen E, Franssila K, Bjarnason O, Normann T, Ringertz N. Observer variation in histologic classification of thyroid cancer. Acta Pathol Microbiol Scand [A] 86A:483–6, 1978.

    CAS  Google Scholar 

  8. Hirokawa M, Carney JA, Goellner JR, DeLellis RA, Heffess CS, Katoh R, Tsujimoto M, Kakudo K. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol 26:1508–14, 2002. doi:10.1097/00000478-200211000-00014.

    Article  PubMed  Google Scholar 

  9. Baloch ZW, Livolsi VA. Follicular-patterned lesions of the thyroid: The bane of the pathologist. Am J Clin Pathol 117:143–50, 2002. doi:10.1309/8VL9-ECXY-NVMX-2RQF.

    Article  PubMed  Google Scholar 

  10. Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, Chan JK, DeLellis RA, Harach HR, Kakudo K, LiVolsi VA, Rosai J, Sebo TJ, Sobrinho-Simoes M, Wenig BM, Lae ME. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28:1336–40, 2004. doi:10.1097/01.pas.0000135519.34847.f6.

    Article  PubMed  Google Scholar 

  11. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. Jama 295:2164–7, 2006. doi:10.1001/jama.295.18.2164.

    Article  PubMed  CAS  Google Scholar 

  12. Hodgson NC, Button J, Solorzano CC. Thyroid cancer: is the incidence still increasing. Ann Surg Oncol 11:1093–7, 2004. doi:10.1245/ASO.2004.03.066.

    Article  PubMed  Google Scholar 

  13. Gharib H, Goellner JR. Fine-needle aspiration biopsy of the thyroid: an appraisal. Ann Intern Med 118:282–9, 1993.

    PubMed  CAS  Google Scholar 

  14. Hamberger B, Gharib H, Melton LJ 3rd, Goellner JR, Zinsmeister AR. Fine-needle aspiration biopsy of thyroid nodules. Impact on thyroid practice and cost of care. Am J Med 73:381–4, 1982. doi:10.1016/0002-9343(82)90719-7.

    Article  PubMed  CAS  Google Scholar 

  15. Grant CS, Hay ID, Gough IR, McCarthy PM, Goellner JR. Long-term follow-up of patients with benign thyroid fine-needle aspiration cytologic diagnoses. Surgery 106:980–5, 1989, discussion 85–6.

    PubMed  CAS  Google Scholar 

  16. Santoro M, Carlomagno F, Hay ID, Herrmann MA, Grieco M, Melillo R, Pierotti MA, Bongarzone I, Della Porta G, Berger N, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89:1517–22, 1992. doi:10.1172/JCI115743.

    Article  PubMed  CAS  Google Scholar 

  17. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA. Chromosome 1 rearrangements involving the genes tpr and ntrk1 produce structurally different thyroid-specific trk oncogenes. Genes Chromosomes Cancer 19:112–23, 1997. doi:10.1002/(SICI)1098-2264(199706)19:2<112::AID-GCC7>3.0.CO;2-1.

    Article  PubMed  CAS  Google Scholar 

  18. Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymph–nodal metastases. Nature 328:170–2, 1987. doi:10.1038/328170a0.

    Article  PubMed  CAS  Google Scholar 

  19. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Della Porta G, Fusco A, Vecchio G. Ptc is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60:557–63, 1990. doi:10.1016/0092-8674(90)90659-3.

    Article  PubMed  CAS  Google Scholar 

  20. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, Klugbauer S. Pattern of radiation-induced ret and ntrk1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6:1093–103, 2000.

    PubMed  CAS  Google Scholar 

  21. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57:1690–4, 1997.

    PubMed  CAS  Google Scholar 

  22. Yip L, Cote GJ, Shapiro SE, Ayers GD, Herzog CE, Sellin RV, Sherman SI, Gagel RF, Lee JE, Evans DB. Multiple endocrine neoplasia type 2: evaluation of the genotype-phenotype relationship. Arch Surg 138:409–16, 2003, discussion 16.

    Article  PubMed  CAS  Google Scholar 

  23. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L, et al. Germ-line mutations of the ret proto-oncogene in multiple endocrine neoplasia type 2a. Nature 363:458–60, 1993. doi:10.1038/363458a0.

    Article  PubMed  CAS  Google Scholar 

  24. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA Jr. Mutations in the ret proto-oncogene are associated with men 2a and fmtc. Hum Mol Genet 2:851–6, 1993. doi:10.1093/hmg/2.7.851.

    Article  PubMed  CAS  Google Scholar 

  25. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D. Braf mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of braf mutations in thyroid cancer: genetic evidence for constitutive activation of the ret/ptc-ras-braf signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–7, 2003.

    PubMed  CAS  Google Scholar 

  27. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE. Braf mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399–404, 2003. doi:10.1210/jc.2003-030838.

    Article  PubMed  CAS  Google Scholar 

  28. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, Carson KA, Vasko V, Larin A, Tallini G, Tolaney S, Holt EH, Hui P, Umbricht CB, Basaria S, Ewertz M, Tufaro AP, Califano JA, Ringel MD, Zeiger MA, Sidransky D, Ladenson PW. Braf mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90:6373–9, 2005. doi:10.1210/jc.2005-0987.

    Article  PubMed  CAS  Google Scholar 

  29. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T, Yamashita S. Clinical implication of hot spot braf mutation, v599e, in papillary thyroid cancers. J Clin Endocrinol Metab 88:4393–7, 2003. doi:10.1210/jc.2003-030305.

    Article  PubMed  CAS  Google Scholar 

  30. Wright PA, Lemoine NR, Mayall ES, Wyllie FS, Hughes D, Williams ED, Wynford-Thomas D. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br J Cancer 60:576–7, 1989.

    PubMed  CAS  Google Scholar 

  31. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4:1474–9, 1990.

    PubMed  CAS  Google Scholar 

  32. Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4:159–64, 1989.

    PubMed  CAS  Google Scholar 

  33. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of ras oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 88:2745–52, 2003. doi:10.1210/jc.2002-021186.

    Article  PubMed  CAS  Google Scholar 

  34. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA. Pax8-pparγ1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289:1357–60, 2000. doi:10.1126/science.289.5483.1357.

    Article  PubMed  CAS  Google Scholar 

  35. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE. Ras point mutations and pax8-ppar gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–26, 2003. doi:10.1210/jc.2002-021907.

    Article  PubMed  CAS  Google Scholar 

  36. Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E, Iacconi P, Miccoli P, Pacini F. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10:19–23, 2000.

    Article  PubMed  CAS  Google Scholar 

  37. French CA, Alexander EK, Cibas ES, Nose V, Laguette J, Faquin W, Garber J, Moore F Jr., Fletcher JA, Larsen PR, Kroll TG. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol 162:1053–60, 2003.

    PubMed  CAS  Google Scholar 

  38. Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, Gauger P, Doherty G, Thompson NW, Hanash S, Koenig RJ, Nikiforov YE. Molecular classification of papillary thyroid carcinoma: Distinct braf, ras, and ret/ptc mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24:6646–56, 2005. doi:10.1038/sj.onc.1208822.

    Article  PubMed  CAS  Google Scholar 

  39. Sapio MR, Posca D, Raggioli A, Guerra A, Marotta V, Deandrea M, Motta M, Limone PP, Troncone G, Caleo A, Rossi G, Fenzi G, Vitale M. Detection of ret/ptc, trk and braf mutations in preoperative diagnosis of thyroid nodules with indeterminate cytological findings. Clin Endocrinol (Oxf) 66:678–83, 2007. doi:10.1111/j.1365-2265.2007.02800.x.

    Article  CAS  Google Scholar 

  40. Cohen Y, Rosenbaum E, Clark DP, Zeiger MA, Umbricht CB, Tufano RP, Sidransky D, Westra WH. Mutational analysis of braf in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 10:2761–5, 2004. doi:10.1158/1078-0432.CCR-03-0273.

    Article  PubMed  CAS  Google Scholar 

  41. Chung KW, Yang SK, Lee GK, Kim EY, Kwon S, Lee SH, Park do J, Lee HS, Cho BY, Lee ES, Kim SW. Detection of brafv600e mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in braf600e mutation-prevalent area. Clin Endocrinol (Oxf) 65:660–6, 2006. doi:10.1111/j.1365-2265.2006.02646.x.

    Article  CAS  Google Scholar 

  42. Pizzolanti G, Russo L, Richiusa P, Bronte V, Nuara RB, Rodolico V, Amato MC, Smeraldi L, Sisto PS, Nucera M, Bommarito A, Citarrella R, Lo Coco R, Cabibi D, Lo Coco A, Frasca F, Gulotta G, Latteri MA, Modica G, Galluzzo A, Giordano C. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through braf v600e mutation and ret/ptc rearrangement. Thyroid 17:1109–15, 2007. doi:10.1089/thy.2007.0008.

    Article  PubMed  CAS  Google Scholar 

  43. Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of ret/ptc gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab 86:2187–90, 2001. doi:10.1210/jc.86.5.2187.

    Article  PubMed  CAS  Google Scholar 

  44. Jin L, Sebo TJ, Nakamura N, Qian X, Oliveira A, Majerus JA, Johnson MR, Lloyd RV. Braf mutation analysis in fine needle aspiration (fna) cytology of the thyroid. Diagn Mol Pathol 15:136–43, 2006. doi:10.1097/01.pdm.0000213461.53021.84.

    Article  PubMed  CAS  Google Scholar 

  45. Xing M, Tufano RP, Tufaro AP, Basaria S, Ewertz M, Rosenbaum E, Byrne PJ, Wang J, Sidransky D, Ladenson PW. Detection of braf mutation on fine needle aspiration biopsy specimens: A new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 89:2867–72, 2004. doi:10.1210/jc.2003-032050.

    Article  PubMed  CAS  Google Scholar 

  46. Salvatore G, Giannini R, Faviana P, Caleo A, Migliaccio I, Fagin JA, Nikiforov YE, Troncone G, Palombini L, Basolo F, Santoro M. Analysis of braf point mutation and ret/ptc rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89:5175–80, 2004. doi:10.1210/jc.2003-032221.

    Article  PubMed  CAS  Google Scholar 

  47. Rowe LR, Bentz BG, Bentz JS. Utility of braf v600e mutation detection in cytologically indeterminate thyroid nodules. Cytojournal 3:10, 2006. doi:10.1186/1742-6413-3-10.

    Article  PubMed  Google Scholar 

  48. Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR, Wilhelm KG Jr., Vinco M, Misek DE, Sanders D, Zhu Z, Ciampi R, Hanash S, Chinnaiyan A, Clifton-Bligh RJ, Robinson BG, Nikiforov YE, Koenig RJ. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the pax8-pparg translocation. Clin Cancer Res 12:1983–93, 2006. doi:10.1158/1078-0432.CCR-05-2039.

    Article  PubMed  CAS  Google Scholar 

  49. Lui WO, Foukakis T, Liden J, Thoppe SR, Dwight T, Hoog A, Zedenius J, Wallin G, Reimers M, Larsson C. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a pax8-ppar(gamma) fusion oncogene. Oncogene 24:1467–76, 2005. doi:10.1038/sj.onc.1208135.

    Article  PubMed  CAS  Google Scholar 

  50. Lui W, Zeng L, Rehrmann V, Deshpande S, Tretiakova M, Kaplan E, Leibiger I, Leibiger B, Enberg U, Hoog A, Larsson C, Kroll T. CREB3L2-PPARγ fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res (in press), 2008.

  51. Powell J, Wang X, Allard B, Sahin M, Wang X-L, Hay I, Hiddinga H, Desphande S, Kroll T, Grebe S, Eberhardt N, McIver B. The pax8/pparg fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type pparg inhibition. Oncogene 23:3634–41, 2004. doi:10.1038/sj.onc.1207399.

    Article  CAS  Google Scholar 

  52. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. Pax8-ppargamma rearrangement in thyroid tumors: Rt-pcr and immunohistochemical analyses. Am J Surg Pathol 26:1016–23, 2002. doi:10.1097/00000478-200208000-00006.

    Article  PubMed  Google Scholar 

  53. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG, Leite V. Expression of pax8-ppargamma1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87:3947–52, 2002. doi:10.1210/jc.87.8.3947.

    Article  PubMed  CAS  Google Scholar 

  54. Lacroix L, Mian C, Barrier T, Talbot M, Caillou B, Schlumberger M, Bidart JM. Pax8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol 151:367–74, 2004. doi:10.1530/eje.0.1510367.

    Article  PubMed  CAS  Google Scholar 

  55. Dwight T, Thoppe SR, Foukakis T, Lui WO, Wallin G, Hoog A, Frisk T, Larsson C, Zedenius J. Involvement of the pax8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88:4440–5, 2003. doi:10.1210/jc.2002–021690.

    Article  PubMed  CAS  Google Scholar 

  56. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, Robinson BG. Detection of the pax8-ppar gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88:354–7, 2003. doi:10.1210/jc.2002–021020.

    Article  PubMed  CAS  Google Scholar 

  57. Roque L, Nunes VM, Ribeiro C, Martins C, Soares J. Karyotypic characterization of papillary thyroid carcinomas. Cancer 92:2529–38, 2001. doi:10.1002/1097-0142(20011115)92:10<2529::AID-CNCR1604>3.0.CO;2-M.

    Article  PubMed  CAS  Google Scholar 

  58. Lacroix L, Lazar V, Michiels S, Ripoche H, Dessen P, Talbot M, Caillou B, Levillain JP, Schlumberger M, Bidart JM. Follicular thyroid tumors with the pax8-ppargamma1 rearrangement display characteristic genetic alterations. Am J Pathol 167:223–31, 2005.

    PubMed  CAS  Google Scholar 

  59. Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL. Molecular basis off hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 85:878–82, 2000. doi:10.1210/jc.85.2.878.

    Article  PubMed  CAS  Google Scholar 

  60. Chiappetta G, Toti P, Cetta F, Giuliano A, Pentimalli F, Amendola I, Lazzi S, Monaco M, Mazzuchelli L, Tosi P, Santoro M, Fusco A. The ret/ptc oncogene is frequently activated in oncocytic thyroid tumors (hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab 87:364–9, 2002. doi:10.1210/jc.87.1.364.

    Article  PubMed  CAS  Google Scholar 

  61. Belchetz G, Cheung CC, Freeman J, Rosen IB, Witterick IJ, Asa SL. Hurthle cell tumors: Using molecular techniques to define a novel classification system. Arch Otolaryngol Head Neck Surg 128:237–40, 2002.

    PubMed  Google Scholar 

  62. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009, 2002. doi:10.1056/NEJMoa021967.

    Article  PubMed  Google Scholar 

  63. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 406:747–52, 2000. doi:10.1038/35021093.

    Article  PubMed  CAS  Google Scholar 

  64. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41–7, 2002. doi:10.1038/ng765.

    Article  PubMed  CAS  Google Scholar 

  65. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–43, 2002. doi:10.1016/S1535–6108(02)00032–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. P. Reed Larsen and Erik Alexander. This work was supported by NIH grant NO. CA75425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd G. Kroll.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12022-008-9053-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, C.A., Fletcher, J.A., Cibas, E.S. et al. Molecular Detection of PPARγ Rearrangements and Thyroid Carcinoma in Preoperative Fine-Needle Aspiration Biopsies. Endocr Pathol 19, 166–174 (2008). https://doi.org/10.1007/s12022-008-9036-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-008-9036-0

Keywords

Navigation