Skip to main content

Advertisement

Log in

The Wnt Signalling Cascade and the Adherens Junction Complex in Craniopharyngioma Tumorigenesis

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Craniopharyngiomas are epithelial, sellar tumours with adamantinomatous (aCP) and papillary (pCP) subtypes. The aCP type usually occurs during childhood and pCP in middle-aged adults; aCPs often contain mutations in CTNNB1, encoding β-catenin, a component of the adherens junction and a mediator of Wnt signalling. No such mutational event has been associated with pCPs, where the BRAF gene appears to be more important. In a large series of 95 craniopharyngiomas, we show that the aCP subtype harbours mutations in CTNNB1 in 52 % of cases, while the pCP subtype does not, with agreement between immunohistochemistry and sequencing methods in the majority of cases. When present, the CTNNB1 mutation is found throughout the aCP tumour, while translocation of β-catenin from membrane to cytosol and nucleus is restricted to small cell clusters near the invading tumour front. We observed translocated β-catenin in 100 % of aCPs, occurring not only in cell clusters but also in individual cells scattered throughout the tumour. We characterised the adherens junction involving α-catenin, β-catenin, γ-catenin, p120 and E-cadherin (cytosolic and membranous components). Although suggested to be important in other sellar mass tumourigenesis pathways, there was no disruption of the adherens junction in these tumours, indicating that a loss of junctional integrity is not associated with β-catenin translocation or mutation. We conclude that mutations in CTNNB1 underlie tumourigenesis in the majority of aCPs, which are distinct morphologically and at the molecular level from pCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bunin, G.R., et al., The descriptive epidemiology of craniopharyngioma. Journal of neurosurgery, 1998. 89(4): p. 547–51.

    Article  CAS  PubMed  Google Scholar 

  2. Lindholm, J. and E.H. Nielsen, Craniopharyngioma: historical notes. Pituitary, 2009. 12(4): p. 352–9.

    Article  CAS  PubMed  Google Scholar 

  3. Karavitaki, N., et al., Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol (Oxf), 2005. 62(4): p. 397–409.

    Article  CAS  Google Scholar 

  4. Aggarwal, A., N. Fersht, and M. Brada, Radiotherapy for craniopharyngioma. Pituitary, 2013. 16(1): p. 26–33.

    Article  PubMed  Google Scholar 

  5. Karavitaki, N., et al., Craniopharyngiomas. Endocr Rev, 2006. 27(4): p. 371–97.

    Article  PubMed  Google Scholar 

  6. Buslei, R., et al., Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol, 2005. 109(6): p. 589–97.

    Article  CAS  PubMed  Google Scholar 

  7. Aberle, H., et al., beta-catenin is a target for the ubiquitin-proteasome pathway. The EMBO journal, 1997. 16(13): p. 3797–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Liu, C., et al., Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 2002. 108(6): p. 837–47.

    Article  CAS  PubMed  Google Scholar 

  9. Filali, M., et al., Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. The Journal of biological chemistry, 2002. 277(36): p. 33398–410.

    Article  CAS  PubMed  Google Scholar 

  10. Brabletz, T., et al., beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American journal of pathology, 1999. 155(4): p. 1033–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Crawford, H.C., et al., The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene, 1999. 18(18): p. 2883–91.

    Article  CAS  PubMed  Google Scholar 

  12. Jho, E.H., et al., Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 2002. 22(4): p. 1172–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lustig, B., et al., Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Molecular and cellular biology, 2002. 22(4): p. 1184–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhang, X., J.P. Gaspard, and D.C. Chung, Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer research, 2001. 61(16): p. 6050–4.

    CAS  PubMed  Google Scholar 

  15. Behrens, J., et al., Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 1996. 382(6592): p. 638–42.

    Article  CAS  PubMed  Google Scholar 

  16. Molenaar, M., et al., XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell, 1996. 86(3): p. 391–9.

    Article  CAS  PubMed  Google Scholar 

  17. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469–80.

    Article  CAS  PubMed  Google Scholar 

  18. Morin, P.J., et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 1997. 275(5307): p. 1787–90.

    Article  CAS  PubMed  Google Scholar 

  19. Alatzoglou, K.S., et al., SOX2 haploinsufficiency is associated with slow progressing hypothalamo-pituitary tumours. Hum Mutat, 2011. 32(12): p. 1376–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Cani, C.M., et al., PROP1 and CTNNB1 expression in adamantinomatous craniopharyngiomas with or without beta-catenin mutations. Clinics (Sao Paulo), 2011. 66(11): p. 1849–54.

    Google Scholar 

  21. Kato, K., et al., Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol, 2004. 203(3): p. 814–21.

    Article  CAS  PubMed  Google Scholar 

  22. Oikonomou, E., et al., Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol, 2005. 73(3): p. 205–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sekine, S., et al., Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol, 2003. 163(5): p. 1707–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Brastianos, P.K., et al., Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet, 2014. 46(2): p. 161–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cao, J., et al., Expression of aberrant beta-catenin and impaired p63 in craniopharyngiomas. Br J Neurosurg, 2010. 24(3): p. 249–56.

    Article  CAS  PubMed  Google Scholar 

  26. Hassanein, A.M., et al., beta-Catenin is expressed aberrantly in tumors expressing shadow cells. Pilomatricoma, craniopharyngioma, and calcifying odontogenic cyst. Am J Clin Pathol, 2003. 120(5): p. 732–6.

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann, B.M., et al., Nuclear beta-catenin accumulation as reliable marker for the differentiation between cystic craniopharyngiomas and rathke cleft cysts: a clinico-pathologic approach. Am J Surg Pathol, 2006. 30(12): p. 1595–603.

    Article  PubMed  Google Scholar 

  28. Holsken, A., et al., Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol, 2010. 119(5): p. 631–9.

    Article  PubMed  Google Scholar 

  29. Andoniadou, C.L., et al., Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol, 2012.

  30. Gaston-Massuet, C., et al., Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A, 2011. 108(28): p. 11482–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Holsken, A., et al., Target gene activation of the Wnt signaling pathway in nuclear beta-catenin accumulating cells of adamantinomatous craniopharyngiomas. Brain Pathol, 2009. 19(3): p. 357–64.

    Article  PubMed  Google Scholar 

  32. Larkin, S.J., et al., BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol, 2014.

  33. Huber, A.H. and W.I. Weis, The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell, 2001. 105(3): p. 391–402.

    Article  CAS  PubMed  Google Scholar 

  34. Nanes, B.A., et al., p120-catenin binding masks an endocytic signal conserved in classical cadherins. The Journal of cell biology, 2012. 199(2): p. 365–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Droufakou, S., et al., Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. International journal of cancer. Journal international du cancer, 2001. 92(3): p. 404–8.

    Article  CAS  PubMed  Google Scholar 

  36. Batlle, E., et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature cell biology, 2000. 2(2): p. 84–9.

    Article  CAS  PubMed  Google Scholar 

  37. Berx, G. and F. Van Roy, The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast cancer research : BCR, 2001. 3(5): p. 289–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mayerle, J., et al., Up-regulation, nuclear import, and tumor growth stimulation of the adhesion protein p120 in pancreatic cancer. Gastroenterology, 2003. 124(4): p. 949–60.

    Article  CAS  PubMed  Google Scholar 

  39. Corso, G., et al., Somatic mutations and deletions of the E-cadherin gene predict poor survival of patients with gastric cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2013. 31(7): p. 868–75.

    Article  CAS  Google Scholar 

  40. Guilford, P., et al., E-cadherin germline mutations in familial gastric cancer. Nature, 1998. 392(6674): p. 402–5.

    Article  CAS  PubMed  Google Scholar 

  41. Richards, F.M., et al., Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Human molecular genetics, 1999. 8(4): p. 607–10.

    Article  CAS  PubMed  Google Scholar 

  42. Elston, M.S., et al., Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J Clin Endocrinol Metab, 2009. 94(4): p. 1436–42.

    Article  CAS  PubMed  Google Scholar 

  43. Lewis-Tuffin, L.J., et al., Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One, 2010. 5(10): p. e13665.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sekine, S., et al., Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation. Histopathology, 2004. 45(6): p. 573–9.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Lavandeira, M., et al., Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab, 2012. 97(1): p. E80-7.

    Article  CAS  PubMed  Google Scholar 

  46. Park, Y.S., et al., Late development of craniopharyngioma following surgery for Rathke's cleft cyst. Clin Neuropathol, 2009. 28(3): p. 177–81.

    Article  CAS  PubMed  Google Scholar 

  47. Rossle, M., et al., Ultra-deep sequencing confirms immunohistochemistry as a highly sensitive and specific method for detecting BRAF V600E mutations in colorectal carcinoma. Virchows Archiv : an international journal of pathology, 2013. 463(5): p. 623–31.

    Article  CAS  Google Scholar 

  48. Routhier, C.A., et al., Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Human pathology, 2013. 44(11): p. 2563–70.

    Article  CAS  PubMed  Google Scholar 

  49. Oikonomou E, B.D., Soares B, De Marco L, Buchfelder M, Adams EF., Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol. , 2005. 73(3): p. 205–9.

  50. Fauquier, T., et al., SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A, 2008. 105(8): p. 2907–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gleiberman, A.S., et al., Genetic approaches identify adult pituitary stem cells. Proc Natl Acad Sci U S A, 2008. 105(17): p. 6332–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Holsken, A., et al., Adamantinomatous craniopharyngiomas express tumor stem cell markers in cells with activated Wnt signaling: further evidence for the existence of a tumor stem cell niche? Pituitary, 2013.

  53. Ericson, J., et al., Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development, 1998. 125(6): p. 1005–15.

    CAS  PubMed  Google Scholar 

  54. Wesche, J., K. Haglund, and E.M. Haugsten, Fibroblast growth factors and their receptors in cancer. Biochem J, 2011. 437(2): p. 199–213.

    Article  CAS  PubMed  Google Scholar 

  55. Yoo, Y.A., et al., Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res, 2011. 71(22): p. 7061–70.

    Article  CAS  PubMed  Google Scholar 

  56. Smith, M.L., G. Hawcroft, and M.A. Hull, The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: evidence of different mechanisms of action. European journal of cancer, 2000. 36(5): p. 664–74.

    Article  CAS  PubMed  Google Scholar 

  57. Dihlmann, S., A. Siermann, and M. von Knebel Doeberitz, The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene, 2001. 20(5): p. 645–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Oxford Brain Bank, supported by the Medical Research Council (MRC), Brains for Dementia Research (BDR) and the NIHR Oxford Biomedical Research Centre. The research was funded by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust and University of Oxford. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Preda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preda, V., Larkin, S.J., Karavitaki, N. et al. The Wnt Signalling Cascade and the Adherens Junction Complex in Craniopharyngioma Tumorigenesis. Endocr Pathol 26, 1–8 (2015). https://doi.org/10.1007/s12022-014-9341-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-014-9341-8

Keywords

Navigation