Skip to main content

Advertisement

Log in

Expression of new antigens on tumor cells by inhibiting nonsense-mediated mRNA decay

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The main reason why tumors are not controlled by the immune system of the cancer patient is that tumors do not express potent tumor antigens that can be recognized by the immune system as “foreign.” The current focus in developing immune-based modalities is to potentiate an immune response against the existing, albeit weak, antigens expressed in the tumor. An alternative approach is to express new, and hence potent, antigens in tumor cells in situ. To this end, we have developed an approach to generate new antigenic determinants in tumor cells using siRNA technology to inhibit nonsense-mediated mRNA decay (NMD), a surveillance mechanism which prevents the expression of mRNAs containing a premature termination codon. Targeting siRNA inhibition to tumor cells—an essential requisite because of the constitutive nature and physiological roles of the NMD process—is accomplished by using a novel targeting technology based on using oligonucleotide aptamer ligands. Aptamers or aptamer-targeted siRNA conjugates, unlike antibodies, can be synthesized in a chemical process providing a more straightforward and cost-effective manufacturing and regulatory approval process to generate clinical-grade reagents. In murine tumor models, the aptamer-targeted siRNA-mediated NMD inhibition in tumor cells led to significant inhibition of tumor growth, which was superior to best-in-class “conventional” cancer vaccination protocols. Tumor-targeted NMD inhibition forms the basis of a simple, broadly useful, and clinically feasible approach to enhance the antigenicity of disseminated tumors leading to their immune recognition and rejection. The cell-free chemically synthesized oligonucleotide backbone of aptamer–siRNAs reduces the risk of immunogenicity and enhances the feasibility of generating reagents suitable for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67(5):1883–6.

    Article  CAS  PubMed  Google Scholar 

  2. Bindea G, Mlecnik B, Fridman WH, Pages F, Galon J. Natural immunity to cancer in humans. Curr Opin Immunol. 2010;22(2):215–22. doi:10.1016/j.coi.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  3. Angell H, Galon J. From the immune contexture to the immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013;25(2):261–7. doi:10.1016/j.coi.2013.03.004.

    Article  CAS  PubMed  Google Scholar 

  4. Schietinger A, Philip M, Schreiber H. Specificity in cancer immunotherapy. Semin Immunol. 2008;20(5):276–85. doi:10.1016/j.smim.2008.07.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kvistborg P, van Buuren MM, Schumacher TN. Human cancer regression antigens. Curr Opin Immunol. 2013;25(2):284–90. doi:10.1016/j.coi.2013.03.005.

    Article  CAS  PubMed  Google Scholar 

  6. Haen SP, Rammensee HG. The repertoire of human tumor-associated epitopes: identification and selection of antigens and their application in clinical trials. Curr Opin Immunol. 2013;25(2):277–83. doi:10.1016/j.coi.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  7. Moore MW, Carbone FR, Bevan MJ. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell. 1988;54(6):777–85.

    Article  CAS  PubMed  Google Scholar 

  8. Schirrmacher V, Fournier P. Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol. 2009;542:565–605.

    Article  CAS  PubMed  Google Scholar 

  9. Schulze T, Kemmner W, Weitz J, Wernecke KD, Schirrmacher V, Schlag PM. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunol Immunother. 2009;58(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  10. Spiotto MT, Rowley DA, Schreiber H. Bystander elimination of antigen loss variants in established tumors. Nat Med. 2004;10(3):294–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer. 2009;9(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  12. Liu TC, Hwang TH, Bell JC, Kirn DH. Development of targeted oncolytic virotherapeutics through translational research. Expert Opin Biol Ther. 2008;8(9):1381–91.

    Article  CAS  PubMed  Google Scholar 

  13. Liu TC, Thorne SH, Kirn DH. Oncolytic adenoviruses for cancer gene therapy. Methods Mol Biol. 2008;433:243–58.

    Article  CAS  PubMed  Google Scholar 

  14. Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005;5(12):965–76.

    Article  CAS  PubMed  Google Scholar 

  15. Pastor F, Kolonias D, Giangrande PH, Gilboa E. Induction of tumor immunity by targeted inhibition of nonsense mediated mRNA decay. Nature. 2010;465:227–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N, Izaurralde E. mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett. 2007;581(15):2845–53.

    Article  CAS  PubMed  Google Scholar 

  17. Isken O, Maquat LE. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet. 2008;9(699):712.

    Google Scholar 

  18. Muhlemann O, Eberle AB, Stalder L, Zamudio Orozco R. Recognition and elimination of nonsense mRNA. Biochim Biophys Acta. 2008;1779(9):538–49.

    Article  PubMed  Google Scholar 

  19. Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Human Mol Genet. 1999;8(10):1893–900.

    Article  CAS  Google Scholar 

  20. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36(8):801–8.

    Article  CAS  PubMed  Google Scholar 

  21. Mendell JT, ap Rhys CM, Dietz HC. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science. 2002;298(5592):419–22.

    Article  CAS  PubMed  Google Scholar 

  22. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet. 2004;36(10):1073–8.

    Article  CAS  PubMed  Google Scholar 

  23. Usuki F, Yamashita A, Kashima I, Higuchi I, Osame M, Ohno S. Specific inhibition of nonsense-mediated mRNA decay components, SMG-1 or Upf1, rescues the phenotype of Ullrich disease fibroblasts. Mol Ther. 2006;14(3):351–60.

    Article  CAS  PubMed  Google Scholar 

  24. Wittmann J, Hol EM, Jack HM. hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Mol Cell Biol. 2006;26(4):1272–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–50. doi:10.1038/nrd3141.

    Article  CAS  PubMed  Google Scholar 

  26. Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Ann Rev Med. 2005;56:555–83.

    Article  CAS  PubMed  Google Scholar 

  27. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol. 2009;27(9):839–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ni X, Zhang Y, Ribas J, Chowdhury WH, Castanares M, Zhang Z, et al. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest. 2011;. doi:10.1172/JCI45109.

    Google Scholar 

  29. Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med. 2011;3(66):66ra6. doi:10.1126/scitranslmed.3001581.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, Xu Z, et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest. 2011;. doi:10.1172/JCI45876.

    PubMed Central  PubMed  Google Scholar 

  31. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 2007;109(12):5346–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pastor F, Kolonias D, McNamara JO 2nd, Gilboa E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther. 2011;19(10):1878–86. doi:10.1038/mt.2011.145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

    Article  CAS  PubMed  Google Scholar 

  34. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  PubMed  Google Scholar 

  35. van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dodson Foundation and the Sylvester Comprehensive Cancer Center (Medical School, University of Miami) and by a grant from the National Cancer Institute (R01 CA151857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Gilboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilboa, E. Expression of new antigens on tumor cells by inhibiting nonsense-mediated mRNA decay. Immunol Res 57, 44–51 (2013). https://doi.org/10.1007/s12026-013-8442-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8442-7

Keywords

Navigation