Skip to main content

Advertisement

Log in

HPV and systemic lupus erythematosus: a mosaic of potential crossreactions

  • Novel Aspects in Lupus, 2017
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Etiology, pathogenesis, and immunology of systemic lupus erythematosus (SLE) form a complex, still undeciphered picture that recently has been further made complicated by a new factor of morbidity: human papillomaviruses (HPVs). Indeed, a prevalence of HPV infections has been reported among SLE patients. Searching for molecular mechanisms that might underlie and explain the relationship between HPV infection and SLE, we explored the hypothesis that immune responses following HPV infection may crossreact with proteins that, when altered, associate with SLE. Analyzing HPV L1 proteins and using Epstein-Barr virus (EBV) and human retrovirus (HERV) as controls, we found a vast peptide overlap with human proteins comprehending lupus Ku autoantigen proteins p86 and p70, lupus brain antigen 1 homolog, lupus antigen expressed in neurons and muscles, natural killer cell IgG-like receptors, complement proteins C4-A and C4-B, complement receptor CD19, and others. The multitude and heterogeneity of peptide overlaps not only further support the hypothesis that crossreactivity can represent a primum movens in SLE onset, but also provide a molecular framework to the concept of SLE as “an autoimmune mosaic syndrome.” Finally, once more, it emerges the need of using the principle of peptide uniqueness as a new paradigm for safe and efficacious vaccinology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallace DJ, Hahn BH, (Eds). Dubois’ lupus erythematosus. Lippincott Williams & Wilkins; Philadelphia, PA: 2007.

  2. Tsokos GC, Gordon C, Smolen JS, (Eds). Systemic lupus erythematosus: a companion to rheumatology. Mosby Elsevier; Philadelphia: 2007.

  3. Zhu H, Luo H, Yan M, Zuo X, Li QZ. Autoantigen microarray for high-throughput autoantibody profiling in systemic lupus erythematosus. Genomics Proteomics Bioinformatics. 2015;13:210–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dema B, Charles N. Autoantibodies in SLE: specificities, isotypes and receptors. Antibodies. 2016;5:2.

    Article  Google Scholar 

  5. Hagberg N, Theorell J, Eloranta ML, Pascal V, Bryceson YT, Rönnblom L. Anti-NKG2A autoantibodies in a patient with systemic lupus erythematosus. Rheumatology (Oxford). 2013;52:1818–23.

    Article  CAS  Google Scholar 

  6. Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23:596–605.

    Article  CAS  PubMed  Google Scholar 

  7. Haaheim LR, Halse AK, Kvakestad R, Stern B, Normann O, Jonsson R. Serum antibodies from patients with primary Sjögren’s syndrome and systemic lupus erythematosus recognize multiple epitopes on the La(SS-B) autoantigen resembling viral protein sequences. Scand J Immunol. 1996;43:115–21.

    Article  CAS  PubMed  Google Scholar 

  8. Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis. 2014;33:1467–75.

    Article  CAS  PubMed  Google Scholar 

  9. Rigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev. 2014;13:96–102.

    Article  CAS  PubMed  Google Scholar 

  10. Rigante D, Esposito S. Infections and systemic lupus erythematosus: binding or sparring partners? Int J Mol Sci. 2015;16:17331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barzilai O, Ram M, Shoenfeld Y. Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol. 2007;19:636–43.

    Article  CAS  PubMed  Google Scholar 

  12. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med. 2005;11:85–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ramos-Casals M. Viruses and lupus: the viral hypothesis. Lupus. 2008;17:163–5.

    Article  PubMed  Google Scholar 

  14. Harley JB, Harley IT, Guthridge JM, James JA. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus. 2006;15:768–77.

    Article  CAS  PubMed  Google Scholar 

  15. Incaprera M, Rindi L, Bazzichi A, Garzelli C. Potential role of the Epstein-Barr virus in systemic lupus erythematosus autoimmunity. Clin Exp Rheumatol. 1998;16:289–94.

    CAS  PubMed  Google Scholar 

  16. Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006;39:63–70.

    Article  CAS  PubMed  Google Scholar 

  17. James JA, Harley JB, Scofield RH. Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol. 2006;18:462–7.

    Article  PubMed  Google Scholar 

  18. James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, Harley JB. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 2001;44:1122–6.

    Article  CAS  PubMed  Google Scholar 

  19. Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity. Bull NYU Hosp Jt Dis. 2006;64:45–50.

    PubMed  Google Scholar 

  20. Ascherio A, Munger KL. EBV and autoimmunity. Curr Top Microbiol Immunol. 2015;390:365–85.

    CAS  PubMed  Google Scholar 

  21. Kasapcopur O, Ergul Y, Kutlug S, Candan C, Camcioglu Y, Arisoy N. Systemic lupus erythematosus due to Epstein-Barr virus or Epstein-Barr virus infection provocating acute exacerbation of systemic lupus erythematosus? Rheumatol Int. 2006;26:765–7.

    Article  PubMed  Google Scholar 

  22. Toussirot E, Roudier J. Epstein-Barr virus in autoimmune diseases. Best Pract Res Clin Rheumatol. 2008;22:883–96.

    Article  CAS  PubMed  Google Scholar 

  23. Posnett DN. Herpesviruses and autoimmunity. Curr Opin Investig Drugs. 2008;9:505–14.

    PubMed  Google Scholar 

  24. Blank M, Shoenfeld Y, Perl A. Cross-talk of the environment with the host genome and the immune system through endogenous retroviruses in systemic lupus erythematosus. Lupus. 2009;18:1136–43.

    Article  CAS  PubMed  Google Scholar 

  25. Perl A, Nagy G, Koncz A, Gergely P, Fernandez D, Doherty E, Telarico T, Bonilla E, Phillips PE. Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE. Autoimmunity. 2008;41:287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adelman MK, Marchalonis JJ. Endogenous retroviruses in systemic lupus erythematosus: candidate lupus viruses. Clin Immunol. 2002;102:107–16.

    Article  CAS  PubMed  Google Scholar 

  27. Naito T, Ogasawara H, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H, Maruyama N. Immune abnormalities induced by human endogenous retroviral peptides: with reference to the pathogenesis of systemic lupus erythematosus. J Clin Immunol. 2003;23:371–6.

    Article  CAS  PubMed  Google Scholar 

  28. Sukapan P, Promnarate P, Avihingsanon Y, Mutirangura A, Hirankarn N. Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J Hum Genet. 2014;59:178–88.

    Article  CAS  PubMed  Google Scholar 

  29. Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol. 2005;15:179–211.

    Article  PubMed  Google Scholar 

  30. Piotrowski PC, Duriagin S, Jagodzinski PP. Expression of human endogenous retrovirus clone 4–1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol. 2005;24:620–4.

    Article  PubMed  Google Scholar 

  31. Gergely Jr P, Pullmann R, Stancato C, et al. Increased prevalence of transfusion-transmitted virus and cross-reactivity with immunodominant epitopes of the HRES-1/p28 endogenous retroviral autoantigen in patients with systemic lupus erythematosus. Clin Immunol. 2005;116:124–34.

    Article  CAS  PubMed  Google Scholar 

  32. Lyrio LD, Grassi MFR, Santana IU, et al. Prevalence of cervical human papillomavirus infection in women with systemic lupus erythematosus. Rheumatol Int. 2013;33:335–40.

    Article  CAS  PubMed  Google Scholar 

  33. Klumb EM, Pinto AC, Jesus GR, Araujo M, Jascone L, Gayer CR, et al. Are women with lupus at higher risk of HPV infection? Lupus. 2010;19:1485–91.

    Article  CAS  PubMed  Google Scholar 

  34. Bae SC, Kim YJ, Suh CH, Kim HA, Hur NW, Lee J. Prevalence of human papilloma virus infections and cervical cytological abnormalities among Korean women with systemic lupus erythematosus. J Korean Med Sci. 2010;25:1431–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nath R, Mant C, Luxton J, et al. High risk of human papillomavirus type 16 infections and of development of cervical squamous intraepithelial lesions in systemic lupus erythematosus patients. Arthritis Rheum. 2007;57:619–25.

    Article  CAS  PubMed  Google Scholar 

  36. Soldevilla HF, Briones SF, Navarra SV. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21:158–61.

    Article  CAS  PubMed  Google Scholar 

  37. Ito H, Noda K, Hirai K, Ukichi T, Furuya K, Kurosaka D. A case of systemic lupus erythematosus (SLE) following human papillomavirus (HPV) vaccination. Nihon Rinsho Meneki Gakkai Kaishi. 2016;39:145–9.

    Article  PubMed  Google Scholar 

  38. Geier DA, Geier MR. Quadrivalent human papillomavirus vaccine and autoimmune adverse events: a case–control assessment of the vaccine adverse event reporting system (VAERS) database. Immunol Res. 2016 Jul;13

  39. Natale C, Giannini T, Lucchese A, Kanduc D. Computer-assisted analysis of molecular mimicry between human papillomavirus 16 E7 oncoprotein and human protein sequences. Immunol Cell Biol. 2000 Dec;78(6):580–5.

    Article  CAS  PubMed  Google Scholar 

  40. Kanduc D, Stufano A, Lucchese G, Kusalik A. Massive peptide sharing between viral and human proteomes. Peptides. 2008 Oct;29(10):1755–66.

    Article  CAS  PubMed  Google Scholar 

  41. Kanduc D. Penta-and hexapeptide sharing between HPV16 and Homo sapiens proteomes. Int J Med Med Sci. 2009 Oct 1;1:383–7.

    CAS  Google Scholar 

  42. Kanduc D. Quantifying the possible cross-reactivity risk of an HPV16 vaccine. J Exp Ther Oncol. 2009;8(1):65–76.

    CAS  PubMed  Google Scholar 

  43. Kanduc D. Potential cross-reactivity between HPV16 L1 protein and sudden death-associated antigens. J Exp Ther Oncol. 2011;9:159–65.

    CAS  PubMed  Google Scholar 

  44. Kanduc D, Shoenfeld Y. From HBV to HPV: designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev. 2016 Aug 1

  45. Magrane M; UniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011; 2011: bar009.

  46. Hom G, Graham RR, Modrek B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358:900–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hatta Y, Tsuchiya N, Matsushita M, Shiota M, Hagiwara K, Tokunaga K. Identification of the gene variations in human CD22. Immunogenetics. 1999;49:280–6.

    Article  CAS  PubMed  Google Scholar 

  48. Lokki ML, Circolo A, Ahokas P, Rupert KL, Yu CY, Colten HR. Deficiency of human complement protein C4 due to identical frameshift mutations in the C4A and C4B genes. J Immunol. 1999;162:3687–93.

    CAS  PubMed  Google Scholar 

  49. Wetsel RA, Kulics J, Lokki ML, et al. Type II human complement C2 deficiency. Allele-specific amino acid substitutions (Ser189->Phe; Gly444->Arg) cause impaired C2 secretion. J Biol Chem. 1996;271:5824–31.

    Article  CAS  PubMed  Google Scholar 

  50. Singer L, Whitehead WT, Akama H, Katz Y, Fishelson Z, Wetsel RA. Inherited human complement C3 deficiency. An amino acid substitution in the beta-chain (ASP549 to ASN) impairs C3 secretion. J Biol Chem. 1994;269:28494–9.

    CAS  PubMed  Google Scholar 

  51. Petry F, Hauptmann G, Goetz J, Grosshans E, Loos M. Molecular basis of a new type of C1q-deficiency associated with a non-functional low molecular weight (LMW) C1q: parallels and differences to other known genetic C1q-defects. Immunopharmacology. 1997;38:189–201.

    Article  CAS  PubMed  Google Scholar 

  52. Dragon-Durey MA, Quartier P, Frémeaux-Bacchi V, et al. Molecular basis of a selective C1s deficiency associated with early onset multiple autoimmune diseases. J Immunol. 2001;166:7612–6.

    Article  CAS  PubMed  Google Scholar 

  53. Wu H, Boackle SA, Hanvivadhanakul P, et al. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2007;104:3961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yasutomo K, Horiuchi T, Kagami S, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28:313–4.

    Article  CAS  PubMed  Google Scholar 

  55. Stenmark H, Aasland R, Toh BH, D’Arrigo A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem. 1996;271:24048–54.

    Article  CAS  PubMed  Google Scholar 

  56. Yasuda S, Stevens RL, Terada T, et al. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. J Immunol. 2007;179:4890–900.

    Article  CAS  PubMed  Google Scholar 

  57. Nath SK, Han S, Kim-Howard X, et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008;40:152–4.

    Article  CAS  PubMed  Google Scholar 

  58. Lee YH, Bae SC. Association between the functional ITGAM rs1143679 G/A polymorphism and systemic lupus erythematosus/lupus nephritis or rheumatoid arthritis: an update meta-analysis. Rheumatol Int. 2015;35:815–23.

    Article  CAS  PubMed  Google Scholar 

  59. Belot A, Kasher PR, Trotter EW, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65:2161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hou YF, Zhang YC, Jiao YL, et al. Disparate distribution of activating and inhibitory killer cell immunoglobulin-like receptor genes in patients with systemic lupus erythematosus. Lupus. 2010 Jan;19(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  61. Pellett F, Siannis F, Vukin I, Lee P, Urowitz MB, Gladman DD. KIRs and autoimmune disease: studies in systemic lupus erythematosus and scleroderma. Tissue Antigens. 2007 Apr;69(Suppl 1):106–8.

    Article  PubMed  Google Scholar 

  62. Toloza S, Pellett F, Chandran V, Ibanez D, Urowitz M, Gladman D. Association of killer cell immunoglobulin-like receptor genotypes with vascular arterial events and anticardiolipin antibodies in patients with lupus. Lupus. 2008 Sep;17(9):793–8.

    Article  PubMed  Google Scholar 

  63. Bai Y, Zhang Y, Yang Q, et al. The aberrant expression of stimulatory and inhibitory killer immunoglobulin-like receptors in NK- and NKT-cells contributes to lupus. Clin Lab. 2014;60:717–27.

    Article  CAS  PubMed  Google Scholar 

  64. Glenn HL, Wang Z, Schwartz LM. Acheron, a lupus antigen family member, regulates integrin expression, adhesion, and motility in differentiating myoblasts. Am J Physiol Cell Physiol. 2010;298:C46–55.

    Article  CAS  PubMed  Google Scholar 

  65. McCurdy DK, Tai LQ, Nguyen J, et al. MAGE Xp-2: a member of the MAGE gene family isolated from an expression library using systemic lupus erythematosus sera. Mol Genet Metab. 1998;63:3–13.

    Article  CAS  PubMed  Google Scholar 

  66. Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356:1216–25.

    Article  CAS  PubMed  Google Scholar 

  67. Matsudaira R, Takeuchi K, Takasaki Y, Yano T, Matsushita M, Hashimoto H. Relationships between autoantibody responses to deletion mutants of Ki antigen and clinical manifestations of lupus. J Rheumatol. 2003;30:1208–14.

    CAS  PubMed  Google Scholar 

  68. Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet. 2004;75:504–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36:337–8.

    Article  CAS  PubMed  Google Scholar 

  70. Ravenscroft JC, Suri M, Rice GI, Szynkiewicz M, Crow YJ. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet A. 2011;155A:235–7.

    Article  PubMed  Google Scholar 

  71. Surolia I, Pirnie SP, Chellappa V, et al. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature. 2010;466:243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cai LQ, Wang ZX, Lu WS, et al. A single-nucleotide polymorphism of the TNFAIP3 gene is associated with systemic lupus erythematosus in Chinese Han population. Mol Biol Rep. 2010;37:389–94.

    Article  CAS  PubMed  Google Scholar 

  73. Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41:1228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goes FS, Hamshere ML, Seifuddin F, et al. Genome-wide association of mood-incongruent psychotic bipolar disorder. Transl Psychiatry. 2012;2:e180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jahantigh D, Salimi S, Mousavi M, et al. Association between functional polymorphisms of DNA double-strand breaks in repair genes XRCC5, XRCC6 and XRCC7 with the risk of systemic lupus erythematosus in south east Iran. DNA Cell Biol. 2015;34:360–6.

    Article  CAS  PubMed  Google Scholar 

  76. Kelavkar U, Wang S, Badr K. KU 70/80 lupus autoantigen is the transcription factor induced by interleukins (IL)-13 and -4 leading to induction of 15-lipoxygenase (15-LO) in human cells. Adv Exp Med Biol. 2002;507:469–81.

    Article  CAS  PubMed  Google Scholar 

  77. Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci. 2013;14:111–20.

    Article  CAS  PubMed  Google Scholar 

  78. Lucchese A, Mittelman A, Tessitore L, Serpico R, Sinha AA, Kanduc D. Proteomic definition of a desmoglein linear determinant common to Pemphigus vulgaris and Pemphigus foliaceous. J Transl Med. 2006;4:37.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kanduc D, Serpico R, Lucchese A, Shoenfeld Y. Correlating low-similarity peptide sequences and HIV B-cell epitopes. Autoimmun Rev. 2008;7:291–6.

    Article  CAS  PubMed  Google Scholar 

  80. Lucchese A, Serpico R, Crincoli V, Shoenfeld Y, Kanduc D. Sequence uniqueness as a molecular signature of HIV-1-derived B-cell epitopes. Int J Immunopathol Pharmacol. 2009;22:639–46.

    Article  CAS  PubMed  Google Scholar 

  81. Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 2.0. Nucleic Acids Res. 2010;38:D854–62.

    Article  CAS  PubMed  Google Scholar 

  82. Capone G, Fasano C, Lucchese G, Calabrò M, Kanduc D. EBV-associated cancer and autoimmunity: searching for therapies. Vaccines (Basel). 2015 Feb 5;3(1):74–89.

    Article  Google Scholar 

  83. Capone G, Calabrò M, Lucchese G, Fasano C, Girardi B, Polimeno L, Kanduc D. Peptide matching between Epstein-Barr virus and human proteins. Pathog Dis. 2013;69(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  84. Tsokos GC (Ed) Complement in autoimmunity. Curr Dir Autoimmun. vol 7, Basel, Karger, 2004.

  85. Kanduc D, Lucchese A, Mittelman A. Non-redundant peptidomes from DAPs: towards “the vaccine”? Autoimmun Rev. 2007;6:290–4.

    Article  CAS  PubMed  Google Scholar 

  86. Kanduc D. Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther. 2009;9:45–53.

    Article  CAS  PubMed  Google Scholar 

  87. Kanduc D. Peptides for anti-ebolavirus vaccines. Curr Drug Discov Technol. 2016 Sep;2

  88. Lucchese G, Kanduc D. Zika virus and autoimmunity: from microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev. 2016;15:801–8.

    Article  CAS  PubMed  Google Scholar 

  89. Lucchese G, Kanduc D. Potential crossreactivity of human immune responses against HCMV glycoprotein B. Curr Drug Discov Technol. 2016;13:16–24.

    Article  CAS  PubMed  Google Scholar 

  90. Kanduc D. Immunogenicity, immunopathogenicity, and immunotolerance in one graph. Anti Cancer Agents Med Chem. 2015;15:1264–8.

    Article  CAS  Google Scholar 

  91. Shoenfeld Y, Isenberg DA. The mosaic of autoimmunity. Immunol Today. 1989;10(4):123–6.

    Article  CAS  PubMed  Google Scholar 

  92. Agmon-Levin N, Lian Z, Shoenfeld Y. Explosion of autoimmune diseases and the mosaic of old and novel factors. Cell Mol Immunol. 2011;8:189–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Perricone C, Agmon-Levin N, Shoenfeld Y. Novel pebbles in the mosaic of autoimmunity. BMC Med. 2013;11:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;4:13–43.

    Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose works we have used but not discussed and cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Shoenfeld.

Ethics declarations

Conflict of interest

Yehuda Shoenfeld appears as a medical consultant in vaccine compensation court, USA.

Electronic supplementary material

ESM 1

(DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segal, Y., Dahan, S., Calabrò, M. et al. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol Res 65, 564–571 (2017). https://doi.org/10.1007/s12026-016-8890-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8890-y

Keywords

Navigation