Skip to main content

Advertisement

Log in

Astrocyte Dysfunction Associated with Cerebellar Attrition in a Nijmegen Breakage Syndrome Animal Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nijmegen breakage syndrome (NBS) is a genomic instability disorder caused by hypomorphic mutations in the Nbs1 gene. When Nbs1 is conditionally inactivated in the central nervous system of mice (Nbs1-CNS-Δ), they suffer from severe cerebellar atrophy, ataxia, and white matter damage. Here, we show that conditional inactivation of the murine Nbs1 gene has a profound effect on the integrity and the functionality of the glial cells, which suggests their crucial role in the pathogenesis of NBS. Interestingly, in Nbs1-CNS-Δ mice, the dramatic reduction in the numbers of Purkinje and granule cells was also linked to a reduction of microglial cells but not to astrocytes (GFAP+), suggesting an impairment in astrocytic functionality. Nbs1 levels were dramatically reduced in adult astrocyte isolated from Nbs1-CNS-Δ mice, suggesting a major role in cerebellar pathology. In order to investigate the effect of Nbs1 deletion on astrocyte activity, we investigated glutamine synthetase levels in astrocyte and discovered 40% reduction as compared to WT. Furthermore, we found a significant reduction in the secretion of neurotrophic factors, such as brain-derived neurotrophic factor and neurotrophin 3. Understanding the contribution of malfunctioning astrocytes to the etiology of NBS can elucidate a hitherto unknown aspect of this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adelman CA, De S, Petrini JH (2009) Rad50 is dispensable for the maintenance and viability of postmitotic tissues. Mol Cell Biol 29:483–492

    Article  PubMed  CAS  Google Scholar 

  • Assaf Y, Galron R, Shapira I, Nitzan A, Blumenfeld-Katzir T, Solomon AS, Holdengreber V, Wang ZQ, Shiloh Y, Barzilai A (2008) MRI evidence of white matter damage in a mouse model of Nijmegen breakage syndrome. Exp Neurol 209:181–191

    Article  PubMed  CAS  Google Scholar 

  • Baranes K, Raz-Prag D, Nitzan A, Galron R, Ashery-Padan R, Rotenstreich Y, Assaf Y, Shiloh Y, Wang ZQ, Barzilai A, Solomon AS (2009) Conditional inactivation of the NBS1 gene in the mouse central nervous system leads to neurodegeneration and disorganization of the visual system. Exp Neurol 218:24–32

    Article  PubMed  CAS  Google Scholar 

  • Barzilai A, Biton S, Shiloh Y (2008) The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 7:1010–1027

    Article  CAS  Google Scholar 

  • Bellamy TC (2006) Interactions between Purkinje neurones and Bergmann glia. Cerebellum 5:116–126

    Article  PubMed  Google Scholar 

  • Biton S, Barzilai A, Shiloh Y (2008) The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 7:1028–1038

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cardona AE, Huang D, Sasse ME, Ransohoff RM (2006) Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc 1:1947–1951

    Article  PubMed  CAS  Google Scholar 

  • Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    Article  PubMed  CAS  Google Scholar 

  • Colon-Ramos DA, Shen K (2008) Cellular conductors: glial cells as guideposts during neural circuit development. PLoS Biol 6:e112

    Article  PubMed  Google Scholar 

  • Digweed M, Sperling K (2004) Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 3:1207–1217

    Article  CAS  Google Scholar 

  • El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    Article  PubMed  CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  PubMed  CAS  Google Scholar 

  • Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 12:762–780

    Article  PubMed  CAS  Google Scholar 

  • Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I (2005) Insulin-like growth factor I treatment for cerebellar ataxia: addressing a common pathway in the pathological cascade? Brain Res Brain Res Rev 50:134–141

    Article  PubMed  CAS  Google Scholar 

  • Frappart PO, Tong WM, Demuth I, Radovanovic I, Herceg Z, Aguzzi A, Digweed M, Wang ZQ (2005) An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 11:538–544

    Article  PubMed  CAS  Google Scholar 

  • Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Gros-Louis F, Gaspar C, Rouleau GA (2006) Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:956–972

    PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Hardin-Pouzet H, Krakowski M, Bourbonniere L, Didier-Bazes M, Tran E, Owens T (1997) Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis. Glia 20:79–85

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci 28:8354–8360

    Article  PubMed  CAS  Google Scholar 

  • Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193:713–726

    Article  PubMed  CAS  Google Scholar 

  • Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772

    Article  PubMed  CAS  Google Scholar 

  • Julien JP, Kriz J (2006) Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:1013–1024

    PubMed  CAS  Google Scholar 

  • Kalehua AN, Nagel JE, Whelchel LM, Gides JJ, Pyle RS, Smith RJ, Kusiak JW, Taub DD (2004) Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp Cell Res 297:197–211

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Wong PK (2009) Oxidative stress is linked to ERK1/2-p16 signaling-mediated growth defect in ATM-deficient astrocytes. J Biol Chem 284(21):14396–14404

    Article  PubMed  CAS  Google Scholar 

  • Ma DK, Ming GL, Song H (2005) Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol 15:514–520

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A (2009) Astrocytes going live: advances and challenges. J Physiol 587:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (2006) Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci 29:506–510

    Article  PubMed  CAS  Google Scholar 

  • Sudarov A, Joyner AL (2007) Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2:26

    Article  PubMed  Google Scholar 

  • Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    Article  PubMed  CAS  Google Scholar 

  • Taylor AM, Groom A, Byrd PJ (2004) Ataxia-telangiectasia-like disorder (ATLD)—its clinical presentation and molecular basis. DNA Repair (Amst) 3:1219–1225

    Article  CAS  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bosch M, Bree RT, Lowndes NF (2003) The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844–849

    Article  PubMed  Google Scholar 

  • Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dork T (2009) Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet 84:605–616

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Shen JK, Lam TT, Zeng HY, Chiang SK, Yang F, Tso MO (2005) Activation of microglia and chemokines in light-induced retinal degeneration. Mol Vis 11:887–895

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is partially supported by grants from the HFSP organization, Dana Foundation and ISF‐Legacy Heritage Biomedical Science Partnership 862/09 (to D.F.) and by the A-T Children Project, the German-Israeli Foundation (to A.B., Z-Q. W, and Y.S.), the USA–Israel Binational Science Foundation, and the Israeli Science Foundation (to A.B.). Z.-Q.W. is supported by the Association for International Cancer Research (AICR), UK and by the Deutschen Forschungsgemeinschaft (DFG), Germany. Work in the laboratory of YS is supported by research grants from the A-T Medical Research Foundation, The Israel Cancer Research Fund, and the A-T Ease Foundation. YS is an Israel Cancer Research Fund Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Frenkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galron, R., Gruber, R., Lifshitz, V. et al. Astrocyte Dysfunction Associated with Cerebellar Attrition in a Nijmegen Breakage Syndrome Animal Model. J Mol Neurosci 45, 202–211 (2011). https://doi.org/10.1007/s12031-011-9494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9494-6

Keywords

Navigation