Skip to main content

Advertisement

Log in

PACAP Modulates Expression of Hypoxia-Inducible Factors in Streptozotocin-Induced Diabetic Rat Retina

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Retinal hypoxia has been related to the pathogenesis of diabetic retinopathy. This event is mediated by the hypoxia-inducible factors (HIFs), including HIF-1α, HIF-2α, and HIF-3α. Previously, we have demonstrated the protective role of pituitary adenylate cyclase-activating peptide (PACAP) in the early phase of diabetic retinopathy. In the present work, we investigated whether PACAP effect in hyperglycemic retina is mediated through modulation of HIFs’ expression. Diabetes was induced with a single injection of streptozotocin (STZ) in rats. After 1 week, a group of diabetic animals was treated with a single intravitreal injection of 100 μM PACAP or saline solution. Then, changes in HIFs’ expression levels were evaluated in the retina after 3 weeks of hyperglycemia. The expression of HIF-1α and HIF-2α was significantly (p < 0.001 vs control) increased in diabetic rats as compared to controls. Instead, their expression levels were significantly (p < 0.001 vs STZ) decreased after PACAP intraocular administration, as detected by Western blot analysis. Conversely, the expression of HIF-3α was significantly (p < 0.001 vs control) downregulated in retinas of STZ-injected rats and significantly (p < 0.001 vs control) increased after PACAP treatment. These data were supported by the immunohistochemical analysis. HIFs were localized either in inner and outer retinal layers. Diabetes interferes with their distribution, which is changed following intravitreal injection of PACAP. The present results suggest that the protective effect of the peptide in diabetic retina might be also mediated through modulation of HIFs’ expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiello LP, Gardner TW, King GL et al (1998) Diabetic retinopathy. Diabetes Care 21(1):143–156

    Article  CAS  PubMed  Google Scholar 

  • Arimura A (1998) Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 48(5):301–331

    Article  CAS  PubMed  Google Scholar 

  • Arimura A, Shioda S (1995) Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol 16(1):53–88

    Article  CAS  PubMed  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P et al (2008) PACAP-mediated neuroprotection of neurochemically identified cell types in MSG-induced retinal degeneration. J Mol Neurosci 36(1–3):97–104

    Article  CAS  PubMed  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P et al (2010) Pituitary adenylate cyclase activating polypeptide in the retina: focus on the retinoprotective effects. Ann N Y Acad Sci 1200:128–139

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Kaiser PK, Michels M et al (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14):1432–1444

    Article  CAS  PubMed  Google Scholar 

  • Bucolo C, Leggio GM, Drago F, Salomone S (2012) Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochem Pharmacol 84(1):88–92

    Article  CAS  PubMed  Google Scholar 

  • Castorina A, Tiralongo A, Giunta S, Carnazza ML, Rasi G, D’Agata V (2008) PACAP and VIP prevent apoptosis in schwannoma cells. Brain Res 1241:29–35

    Article  CAS  PubMed  Google Scholar 

  • Castorina A, Giunta S, Mazzone V, Cardile V, D’Agata V (2010) Effects of PACAP and VIP on hyperglycemia-induced proliferation in murine microvascular endothelial cells. Peptides 31(12):2276–2283

    Article  CAS  PubMed  Google Scholar 

  • Castorina A, Giunta S, Scuderi S, D’Agata V (2012) Involvement of PACAP/ADNP signaling in the resistance to cell death in malignant peripheral nerve sheath tumor (MPNST) cells. J Mol Neurosci 48(3):674–683

    Article  CAS  PubMed  Google Scholar 

  • Castorina A, Scuderi S, D’Amico AG, Drago F, D’Agata V (2014) PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res 322(1):108–121

    Article  CAS  PubMed  Google Scholar 

  • D’Agata V, Cavallaro S (1998) Functional and molecular expression of PACAP/VIP receptors in the rat retina. Mol Brain Res 54(1):161–164

    Article  PubMed  Google Scholar 

  • D’Amico AG, Scuderi S, Saccone S, Castorina A, Drago F, D’Agata V (2013) Antiproliferative effects of PACAP and VIP in serum-starved glioma cells. J Mol Neurosci 51(2):503–513

    Article  PubMed  Google Scholar 

  • D’Amico AG, Scuderi S, Maugeri G, Cavallaro S, Drago F, D’Agata V (2014) NAP reduces murine microvascular endothelial cells proliferation induced by hyperglycemia. J Mol Neurosci 54(3):405–413

    Article  PubMed  Google Scholar 

  • Danyadi B, Szabadfi K, Reglodi D et al (2014) PACAP application improves functional outcome of chronic retinal ischemic injury in rats-evidence from electroretinographic measurements. J Mol Neurosci 54(3):293–299

    Article  CAS  PubMed  Google Scholar 

  • Duh E, Aiello LP (1999) Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 48(10):1899–1906

    Article  CAS  PubMed  Google Scholar 

  • Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem 281:15215–15226

    Article  CAS  PubMed  Google Scholar 

  • Fabian E, Reglodi D, Mester L et al (2012) Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress. J Mol Neurosci 48(3):493–500

    Article  CAS  PubMed  Google Scholar 

  • Gábriel R (2013) Neuropeptides and diabetic retinopathy. Br J Clin Pharmacol 75(5):1189–1201

    Article  PubMed Central  PubMed  Google Scholar 

  • Giunta S, Castorina A, Bucolo C, Magro G, Drago F, D’Agata V (2012) Early changes in pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide and related receptors expression in retina of streptozotocin-induced diabetic rats. Peptides 37(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7(3):205–213

    CAS  PubMed  Google Scholar 

  • Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N (2001) Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun 287(4):808–813

    Article  CAS  PubMed  Google Scholar 

  • Hoerger TJ, Segel JE, Gregg EW, Saaddine JB (2008) Is glycemic control improving in U.S. adults? Diabetes Care 31(1):81–86

    Article  PubMed  Google Scholar 

  • Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271(4 Pt 1):C1172–C1180

    CAS  PubMed  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    Article  CAS  PubMed  Google Scholar 

  • Kiss P, Tamás A, Lubics A et al (2006) Effects of systemic PACAP treatment in monosodium glutamate-induced behavioral changes and retinal degeneration. Ann N Y Acad Sci 1070:365–370

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Morgan GA, Harris NR (2008) Ozagrel reverses streptozotocin-induced constriction of arterioles in rat retina. Microvasc Res 76(3):217–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Zhao SZ, Wang PP, Yu SP, Zheng Z, Xu X (2012) Calcium mediates high glucose-induced HIF-1α and VEGF expression in cultured rat retinal Müller cells through CaMKII-CREB pathway. Acta Pharmacol Sin 33(8):1030–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin M, Chen Y, Jin J, Hu Y et al (2011) Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Müller cells. Diabetologia 54(6):1554–1566

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Chiu L, Lee HT et al (2015) PACAP38/PAC1 signaling induces bone marrow-derived cells homing to ischemic brain. Stem Cells 33(4):1153–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ly A, Yee P, Vessey KA, Phipps JA, Jobling AI, Fletcher EL (2011) Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Invest Ophthalmol Vis Sci 52(13):9316–9326

    Article  CAS  PubMed  Google Scholar 

  • Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277(36):32405–32408

    Article  CAS  PubMed  Google Scholar 

  • Maynard MA, Ohh M (2004) Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 24(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MA, Ohh M (2005) Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J 19(11):1396–1406

    Article  CAS  PubMed  Google Scholar 

  • Maynard MA, Evans AJ, Shi W, Kim WY, Liu FF, Ohh M (2007) Dominant-negative HIF-3 alpha 4 suppresses VHL-null renal cell carcinoma progression. Cell Cycle 6(22):2810–2816

    Article  CAS  PubMed  Google Scholar 

  • Nakamachi T, Matkovits A, Seki T, Shioda S (2012) Distribution and protective function of pituitary adenylate cyclase-activating polypeptide in the retina. Front Endocrinol (Lausanne) 3:145

    CAS  Google Scholar 

  • Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, Adamis AP (2004) Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol 165(2):457–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86(2):236–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saydah SH, Fradkin J, Cowie CC (2004) Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 291(3):335–342

    Article  CAS  PubMed  Google Scholar 

  • Scheurer SB, Rybak JN, Rosli C, Neri D, Elia G (2004) Modulation of gene expression by hypoxia in human umbilical cord vein endothelial cells: a transcriptomic and proteomic study. Proteomics 4(6):1737–1760

    Article  CAS  PubMed  Google Scholar 

  • Scuderi S, D’Amico AG, Castorina A, Imbesi R, Carnazza ML, D’Agata V (2013) Ameliorative effect of PACAP and VIP against increased permeability in a model of outer blood retinal barrier dysfunction. Peptides 39:119–124

    Article  CAS  PubMed  Google Scholar 

  • Scuderi S, D’Amico AG, Federico C et al (2015) Different retinal expression patterns of IL-1α, IL-1β, and their receptors in a rat model of type 1 STZ-induced diabetes. J Mol Neurosci 56(2):431–439

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Tanaka T, Nawa H et al (2004) Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes 53(9):2412–2419

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Itoh H, Nakamachi T, Shioda S (2008) Suppression of ganglion cell death by PACAP following optic nerve transection in the rat. J Mol Neurosci 36(1–3):57–60

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271(51):32529–32537

    Article  CAS  PubMed  Google Scholar 

  • Szabadfi K, Atlasz T, Kiss P et al (2012) Protective effects of the neuropeptide PACAP in diabetic retinopathy. Cell Tissue Res 348(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Szabadfi K, Szabo A, Kiss P et al (2014) PACAP promotes neuron survival in early experimental diabetic retinopathy. Neurochem Int 64:84–91

    Article  CAS  PubMed  Google Scholar 

  • Treins C, Giorgetti-Peraldi S, Murdaca J, Monthouël-Kartmann MN, Van Obberghen E (2005) Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I. Mol Endocrinol 19(5):1304–1317

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Jiang B, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci 92(12):5510–5514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright WS, McElhatten RM, Messina JE, Harris NR (2010) Hypoxia and the expression of HIF-1alpha and HIF-2alpha in the retina of streptozotocin-injected mice and rats. Exp Eye Res 90(3):405–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright WS, McElhatten RM, Harris NR (2011) Increase in retinal hypoxia-inducible factor-2α, but not hypoxia, early in the progression of diabetes in the rat. Exp Eye Res 93(4):437–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao Q, Zeng S, Ling S, Lv M (2006) Upregulation of HIF-1alpha and VEGF expression by elevated glucose concentration and hypoxia in cultured human retinal pigment epithelial cells. J Huazhong Univ Sci Technolog Med Sci 26(4):463–465

    Article  CAS  PubMed  Google Scholar 

  • Yan HT, Su GF (2014) Expression and significance of HIF-1 α and VEGF in rats with diabetic retinopathy. Asian Pac J Trop Med 7(3):237–240

    Article  CAS  PubMed  Google Scholar 

  • Yan JQ, Zhang ZY, Shi HL (2012) HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci 69(1):115–128

    Article  CAS  PubMed  Google Scholar 

  • Yang SL, Wu C, Xiong ZF, Fang X (2015) Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (review). Mol Med Rep 12(2):2411–2416

    CAS  PubMed  Google Scholar 

  • Zhang P, Yao Q, Lu L, Li Y, Chen PJ, Duan C (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6(6):1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Zhou CJ, Shioda S, Yada T, Inagaki N, Pleasure SJ, Kikuyama S (2002) PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr Protein Pept Sci 3(4):423–439

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velia D’Agata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, A.G., Maugeri, G., Reitano, R. et al. PACAP Modulates Expression of Hypoxia-Inducible Factors in Streptozotocin-Induced Diabetic Rat Retina. J Mol Neurosci 57, 501–509 (2015). https://doi.org/10.1007/s12031-015-0621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0621-7

Keywords

Navigation