Skip to main content

Advertisement

Log in

Revealing differentially expressed proteins in two morphological forms of Spirulina platensis by proteomic analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Spirulina is distinguished from other cyanobacteria by its spiral morphology; however, this cyanobacterium has frequently been observed with a linear morphology in laboratory and industrial conditions. In our laboratory conditions, the simultaneously presence of the linear and spiral forms has also been observed. In the present study, the two forms of S. platensis C1 were separated and grown as axenic cultures in order to study the proteins that were differentially expressed in the soluble and insoluble protein fractions of the spiral and the linear forms. Two dimensional-differential gel electrophoresis (2D-DIGE) was performed to separate differentially expressed proteins that were subsequently identified by mass spectrometry. The differentially expressed proteins suggested two points. First, the morphological change is possibly induced by various environmental stresses such as oxygen level, carbon dioxide level, nutrient availability, and light. Second, the change of cell-shape might be a result of the change in a cell shape determination mechanism. Thus, this study is the first to show evidence at the protein level that may explain this morphological transformation in Spirulina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewin, R. A. (1980). Uncoil variants of Spirulina platensis (Cyanophyceae: Oscillatoriaceae). Archives of Hydrobiology, 60 (suppl), Algological Studies, 26, 48–52.

  2. Wang, Z. P., & Zhao, Y. (2005). Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): From linear to helical. Journal of Phycology, 41, 622–628.

    Article  Google Scholar 

  3. Jeeji Bai, N. (1985). Competitive exclusion or morpholoical transformation? A case study with Spirulina fusiformis. Archives of Hydrobiology, 71(suppl), Algological Studies, 38/39, 191–199.

  4. Wang , Z. P., Chen, S. M., Jia, X. M., Cui, H. R., & Xu B. J. (1997). The effect of environmental factors and gamma-rays on the morphology and growth of Spirulina platensis. The Journal of Zhejiang Agricultural University, 23, 36–40.

    Google Scholar 

  5. Jeeji Bai, N., & Seshadri, C. V. (1980). On coiling and uncoiling of trichromes in the genus Spirulina. Archives of Hydrobiology, 60(suppl), Algological Studies, 26, 32–47.

  6. Wu , H., Gao, K., Villafane, V. E., Watanabe, T., & Helbling, E. W. (2005). Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Applied Environment Microbiology, 71, 5004–5013.

    Article  CAS  Google Scholar 

  7. Nubel , U., Garcia-Pichel, F., & Muyzer, G. (2000). The halotolerance and phylogeny of cyanobacteria with tightly coiled trichromes (Spirulina Turpin) and the describtion of Halospirulina tapeticola gen. nov., sp. nov. International Journal of Systematic Evolutionary Microbiology, 50, 1265–1277.

    CAS  Google Scholar 

  8. Richmond, A. (Ed.) (1986). Microalgae of economic potential. Boca Raton, FL: CRC Press, pp. 199–244.

  9. Bennet , J., & Bogorad, L. (1973). Complementary chromatic adaptation in filamentous blue-green alga. Journal of Cell Biology, 58, 419–438.

    Article  Google Scholar 

  10. Hirschberg, J., & Chamovitz, D. (Eds.) (1994). Carotenoid in cyanobacteria. Kluwer Academic Publisher.

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 269–275.

    Google Scholar 

  12. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  13. Lapage, G., & Roy, C. C. (1984). Improved recovery of fatty acid through direct transesterification without prior extraction of purification. Journal of Lipid Research, 25, 1391–1396.

    Google Scholar 

  14. Huang, F., Parmryd, I., Nilsson, F., Persson, A., Pakrasi, H. B., Andersson, B., & Norling, B. (2002). Proteomics of Synechocystis sp. strain PCC 6803. Molecular and Cellular Proteomics, 1, 956–966.

    Article  PubMed  CAS  Google Scholar 

  15. Fuqua, C., & Greenberg, E. P. (2002). Listening in on bacteria: Acyl-homoserine lactone signalling. Nature Reviews. Molecular Cell Biology, 3, 685–695.

    Article  PubMed  CAS  Google Scholar 

  16. Welch, M., Dutton, J. M., Glansdorp, F. G., Thomas, G. L., Smith, D. S., Coulthurst, S. J., Bernard, A. M., Salmond, G. P., & Spring, D. R. (2005). Structure-activity relationships of Erwinia carotovara quorum sensing signaling molecules. Bioorganic & Medicinal Chemistry Letters, 15, 4235–4238.

    Article  CAS  Google Scholar 

  17. Martin-Luna, B., Hernandez, J. A., Teresa Bes, M., Fillat, M. F., & Peleato, M. L. (2006). Identification of a ferric uptake regulator from Microcystis aeruginosa PCC7806. FEMS Microbiology, 254, 63–70.

    Article  CAS  Google Scholar 

  18. Hernandez, J. A., Teresa Bes, M., Fillat, M. F., Neira, J. L., & Peleato, M. L. (2002). Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC7119: factors affecting its oligomerization state. The Biochemical Journal, 366, 315–322.

    PubMed  CAS  Google Scholar 

  19. Maghnouj, A., Sousa Cabral, T., Stalon, V., & Wauven, C. V. (1998). The arcABCD gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by arginine repressor ArgR. Journal of Bacteriology, 180, 6468–6475.

    PubMed  CAS  Google Scholar 

  20. Lu, C., Winteler, H., Abdelal, A., & Haas, D. (1999). The ArgR regulatory protein, a helper to the anaerobic regulator ANR during transcriptional activation of the arcD promoter in Pseudomonas aeruginosa. Journal of Bacteriology, 181, 2459–2464.

    PubMed  CAS  Google Scholar 

  21. Sunnerhagen, M., Nilges, M., Otting, G., & Carey, J. (1997). Solution structure of the DNA-binding domain and model for the complex of multifunctional hexameric arginine repressor with DNA. Nature Structural & Molecular biology, 4, 819–826.

    Article  CAS  Google Scholar 

  22. Weerasinghe, J. P., Dong, T., Schertzberg, M. R., Kirchhof, M. G., Sun, Y., & Schellhorn, H. B. (2006). Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli. BMC Microbiology, 6, 14.

  23. Wang, Z. P., Cui, H. R., Zhu, J. X., Jia, X. M., & Qian, K. X. (1998). The comparison of growth rate and photopigments of filament of Spirulina platensis strain Z with different morphology. Acta Microbiologica Sinica, 38, 321–324.

    PubMed  CAS  Google Scholar 

  24. Gunsalus, R. P. (1992). Control of electron flow in Escherichia coli: Coordinated transcription of respiratory pathway genes. Journal of Bacteriology, 174, 7069–7074.

    PubMed  CAS  Google Scholar 

  25. Downey, R. J. (1966). Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus. Journal of Bacteriology, 91, 634–641.

    Article  PubMed  CAS  Google Scholar 

  26. Chan, C. S., Howell, J. M., Workentine, M. L., & Turner, R. J. (2006). Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli. Biochemical and Biophysical Research Communications, 343, 244–251.

    Article  PubMed  CAS  Google Scholar 

  27. Straat, P. A., & Nason, A. (1965). Characterization of a nitrate reductase from the chemoautotroph Nitrobacter agilis. The Journal of Biological Chemistry, 240, 1412–1426.

    PubMed  CAS  Google Scholar 

  28. Sohaskay, C. D. (2005). Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology, 151, 3803–3810.

    Article  Google Scholar 

  29. Kaplan, A., Helman, Y., Tchernov, D., & Reinhold, L. (2001). Acclimation of photosynthetic microorganisms to changing ambient carbon dioxide concentration. Proceedings of the National Academy of Sciences of the United States of America, 98, 4817–4818.

    Article  PubMed  CAS  Google Scholar 

  30. Im, C. S., & Grossman, A. R. (2001). Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. The Plant Journal, 30, 301–313.

    Article  Google Scholar 

  31. Ogawa, T. (1991). A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 88, 4275–4279.

    Article  PubMed  CAS  Google Scholar 

  32. Anderson, R. G., Hussey, H., & Braddiley, J. (1972). The mechanism of wall synthesis in bacteria. The Biochemical Journal, 127, 11–25.

    PubMed  CAS  Google Scholar 

  33. Pattridge, K. A., Weber, C. H., Friesen, J. A., Sanker, S., Kent, C., & Ludwig, M. L. (2003). Glycerol-3-phosphate cytidylyltransferase: Structural changes induced by binding of CDP-glycerol and the role of lysine residues in catalysis. The Journal of Biological Chemistry, 278, 51863–51871.

    Article  PubMed  CAS  Google Scholar 

  34. Hiemstra, H., Nanninga, N., Woldringh, C. L., Inouye, M., & Witholt, B. (1987). Distribution of newly synthesized lipoprotein over the outer membrane and the peptidoglycan sacculus of an Escherichia coli lac-lpp strain. Journal of Bacteriology, 169, 5434–5444.

    PubMed  CAS  Google Scholar 

  35. Tirupati, B., Vey, J. L., Drennan, C. L., & Bollinger, J. M. J. (2004). Kinetic and structural charactrization of Slr0077/SufS, the essential cysteine desulfurase from Synechocystis sp. PCC 6803. Biochemistry, 43, 12210–12219.

    Article  PubMed  CAS  Google Scholar 

  36. Outten, F. W., Wod, M. J., Munoz, F. M., & Storz, G. (2003). The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. The Journal of Biological Chemistry, 278, 45713–45719.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apiradee Hongsthong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hongsthong, A., Sirijuntarut, M., Prommeenate, P. et al. Revealing differentially expressed proteins in two morphological forms of Spirulina platensis by proteomic analysis. Mol Biotechnol 36, 123–130 (2007). https://doi.org/10.1007/s12033-007-0013-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0013-5

Keywords

Navigation