Skip to main content
Log in

An Overview of Structural DNA Nanotechnology

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Structural DNA Nanotechnology uses unusual DNA motifs to build target shapes and arrangements. These unusual motifs are generated by reciprocal exchange of DNA backbones, leading to branched systems with many strands and multiple helical domains. The motifs may be combined by sticky ended cohesion, involving hydrogen bonding or covalent interactions. Other forms of cohesion involve edge-sharing or paranemic interactions of double helices. A large number of individual species have been developed by this approach, including polyhedral catenanes, a variety of single-stranded knots, and Borromean rings. In addition to these static species, DNA-based nanomechanical devices have been produced that are ultimately targeted to lead to nanorobotics. Many of the key goals of structural DNA nanotechnology entail the use of periodic arrays. A variety of 2D DNA arrays have been produced with tunable features, such as patterns and cavities. DNA molecules have be used successfully in DNA-based computation as molecular representations of Wang tiles, whose self-assembly can be programmed to perform a calculation. About 4 years ago, on the fiftieth anniversary of the double helix, the area appeared to be at the cusp of a truly exciting explosion of applications; this was a correct assessment, and much progress has been made in the intervening period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Seeman, N. C. (2005). Structural DNA Nanotechnology: An overview. In Sandra J. Rosenthal, & David W. Wright (Eds.), Methods in molecular biology 303: Bionanotechnology protocols (pp. 143–166). Totowa, NJ: Humana Press.

    Google Scholar 

  2. Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737–738.

    Article  PubMed  CAS  Google Scholar 

  3. Seeman, N. C. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99, 237–247.

    Article  PubMed  CAS  Google Scholar 

  4. Robinson, B. H., & Seeman, N. C. (1987). The design of a biochip. Protein Engineering, 1, 295–300.

    Article  PubMed  CAS  Google Scholar 

  5. Winfree, E. (1996). On the computational power of DNA annealing and ligation. In E. J. Lipton, & E. B. Baum (Eds.), DNA Based Computing (pp. 199–219). Providence, Am. Math. Soc.

    Google Scholar 

  6. Seeman, N. C. (2000). In the nick of space: Generalized nucleic acid complementarity and the development of DNA nanotechnology. Synlett, 2000, 1536–1548.

    Article  Google Scholar 

  7. Cohen, S. N., Chang, A. C.Y., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70, 3240–3244.

    Article  PubMed  CAS  Google Scholar 

  8. Qiu, H., Dewan, J. C., & Seeman, N. C. (1997). A DNA decamer with a sticky end: The crystal structure of d-CGACGATCGT. Journal of Molecular Biology, 267, 881–898.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang, X., Yan, H., Shen, Z., & Seeman, N. C. (2002). Paranemic cohesion of topologically-closed DNA molecules. Journal of the American Chemical Society, 124, 12940–12941.

    Article  PubMed  CAS  Google Scholar 

  10. Shih, W. M., Quispe, J. D., & Joyce, G. F. (2004). A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427, 618–621.

    Article  PubMed  CAS  Google Scholar 

  11. Shen, Z., Yan, H., Wang, T., & Seeman, N. C. (2004). Paranemic crossover DNA: A generalized Holliday structure with applications in nanotechnology. Journal of the American Chemical Society, 126, 1666–1674.

    Article  PubMed  CAS  Google Scholar 

  12. Yan, H., & Seeman, N. C. (2003). Edge-sharing motifs in DNA nanotechnology. Journal of Supramolecular Chemistry, 1, 229–237.

    Google Scholar 

  13. Kuzuya, A., Wang, R., Sha, R., & Seeman, N. C. (2007). Six-helix and eight-helix DNA nanotubes assembled from half-tubes. NanoLetters (in press).

  14. Seeman, N. C. (2001). DNA nicks and nodes and nanotechnology. NanoLetters, 1, 22–26.

    CAS  Google Scholar 

  15. Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research, 5, 282–304.

    Article  Google Scholar 

  16. Fu, T.-J., & Seeman, N. C. (1993). DNA double crossover structures. Biochemistry, 32, 3211–3220.

    Article  PubMed  CAS  Google Scholar 

  17. Schwacha, A., & Kleckner, N. (1995). Identification of double Holliday junctions as intermediates in meiotic recombination. Cell, 83, 783–791.

    Article  PubMed  CAS  Google Scholar 

  18. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J. H., & Seeman, N. C. (2000). The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. Journal of the American Chemical Society, 122, 1848–1860.

    Article  CAS  Google Scholar 

  19. Yan, H., Zhang, X., Shen, Z., & Seeman, N. C. (2002). A robust DNA mechanical device controlled by hybridization topology. Nature, 415, 62–65.

    Article  PubMed  CAS  Google Scholar 

  20. Li, X., Yang, X., Qi, J., & Seeman, N. C. (1996). Antiparallel DNA double crossover molecules as components for nanoconstruction. Journal of the American Chemical Society, 118, 6131–6140.

    Article  CAS  Google Scholar 

  21. Mathieu, F., Liao, S., Mao, C., Kopatsch, J., Wang, T., & Seeman, N. C. (2005). Six-helix bundles designed from DNA. NanoLetters, 5, 661–665.

    CAS  Google Scholar 

  22. Liu, D., Wang, M., Deng, Z., Walulu, R., & Mao, C. (2004). Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. Journal of the American Chemical Society, 126, 2324–2325.

    Article  PubMed  CAS  Google Scholar 

  23. Zheng, J., Constantinou, P. E., Micheel, C., Alivisatos, A. P., Kiehl, R. A., & Seeman, N. C. (2006). 2D nanoparticle arrays show the organizational power of robust DNA motifs. NanoLetters, 6, 1502–1504.

    CAS  Google Scholar 

  24. Constantinou, P. E., Wang, T., Kopatsch, J, Israel, L. B., Zhang, X., Ding, B., Sherman, W. B., Wang, X, Zheng, J., Sha, R., & Seeman, N. C. (2006). Double cohesion in structural DNA nanotechnology. Organic & Biomolecular Chemistry, 4, 3414–3419.

    Article  CAS  Google Scholar 

  25. Goodman, R. P., Schaap, I. A.T., Tardin, C. F., Erben, C. M., Berry, R. M., Schmidt, C. F., & Turberfield, A. J. (2005). Rapid chiral assembly of rigid DNA building blocks form molecular fabrication. Science, 310, 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  26. Caruthers, M. H. (1985). Gene synthesis machines: DNA chemistry and its uses. Science, 230, 281–285.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, Y., & Seeman, N. C. (1992) A solid-support methodology for the construction of geometrical objects from DNA. Journal of the American Chemical Society, 114, 2656–2663.

    Article  CAS  Google Scholar 

  28. Chen, J., & Seeman, N. C. (1991). The synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350, 631–633.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, Y., & Seeman, N. C. (1994). The construction of a DNA truncated octahedron. Journal of the American Chemical Society, 116, 1661–1669.

    Article  CAS  Google Scholar 

  30. Qi, J., Li, X., Yang, X., & Seeman, N. C. (1996). The ligation of triangles built from bulged three-arm DNA branched junctions. Journal of the American Chemical Society, 118, 6121–6130.

    Article  CAS  Google Scholar 

  31. Hagerman, P. J. (1988). Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry, 17, 265–286.

    Article  PubMed  CAS  Google Scholar 

  32. Seeman, N. C., Rosenberg, J. M., & Rich, A. (1976). Sequence specific recognition of double helical nucleic acids by proteins. Proceedings of the National Academy of Sciences of the United States of America, 73, 804–808.

    Article  PubMed  CAS  Google Scholar 

  33. Zhu, L., Lukeman, P. S., Canary, J. W., & Seeman, N. C. (2003). Nylon/DNA: single-stranded DNA with a covalently stitched nylon lining. Journal of the American Chemical Society, 125, 10178–10179.

    Article  PubMed  CAS  Google Scholar 

  34. Freier, S. M., & Altmann, K.-H. (1997). The ups and down of nucleic acid duplex stability. Nucleic Acids Research, 25, 4229–4243.

    Article  Google Scholar 

  35. Nielsen, P. E., Egholm, M., Berg, R. H., Buchardt, O. (1991). Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 254, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  36. Lukeman, P. S., Mittal, A., & Seeman, N. C. (2004). Two dimensional PNA/DNA arrays: Estimating the helicity of unusual nucleic acid polymers. Chemical Communications, 2004, 1694–1695.

    Article  CAS  Google Scholar 

  37. Seeman, N., & Kallenbach, N. R. (1983). Design of immobile nucleic acid junctions. Biophysical Journal, 44, 201–209.

    PubMed  CAS  Google Scholar 

  38. Seeman, N. C. (1990). De novo design of sequences for nucleic acid structure engineering. Journal of Biomolecular Structure & Dynamics, 8, 573–581.

    CAS  Google Scholar 

  39. Ma, R.-I., Kallenbach, N. R., Sheardy, R. D., Petrillo, M. L., & Seeman, N. C. (1986). Three arm nucleic acid junctions are flexible. Nucleic Acids Research, 14, 9745–9753.

    Article  PubMed  CAS  Google Scholar 

  40. Kallenbach, N. R., Ma R. -I., & Seeman, N. C. (1983). An immobile nucleic acid junction constructed from oligonucleotides. Nature, 305, 829–831.

    Article  CAS  Google Scholar 

  41. Wang, Y., Mueller, J. E., Kemper, B., & Seeman, N. C. (1991). The assembly and characterization of 5-Arm and 6-Arm DNA junctions. Biochemistry, 30, 5667–5674.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, X., & Seeman, N. C. (2007). The assembly and characterization of 8-arm and 12-arm DNA branched junctions. Journal of the American Chemical Society (in press).

  43. Petrillo, M. L., Newton, C. J., Cunningham, R. P., Ma, R.-I., Kallenbach, N. R., & Seeman N. C. (1988). Ligation and flexibility of four-arm DNA junctions. Biopolymers, 27, 1337–1352.

    Article  PubMed  CAS  Google Scholar 

  44. Eis, P. S., & Millar D. P. (1993). Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer. Biochemistry, 32, 13852–13860.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, J., & Seeman, N. C. (1991). The electrophoretic properties of a DNA cube and its sub-structure catenanes. Electrophoresis, 12, 607–611.

    Article  PubMed  CAS  Google Scholar 

  46. Seeman, N. C. (1992). The design of single-stranded nucleic acid knots. Molecular Engineering, 2, 297–307.

    Article  CAS  Google Scholar 

  47. Du, S. M., Stollar, B. D., & Seeman, N. C. (1995). A synthetic DNA molecule in three knotted topologies. Journal of the American Chemical Society, 117, 1194–200.

    Article  CAS  Google Scholar 

  48. Mao, C., Sun, W., & Seeman, N. C. (1997). Assembly of Borromean rings from DNA. Nature, 386, 137–138.

    Article  PubMed  CAS  Google Scholar 

  49. Chichak, K. S., Cantrill, S. J., Pease, A. R., Chiu, S. H., Cave, G. W. V., Atwood, J. L., & Stoddart, J. F. (2004). Molecular Borromean rings. Science, 304, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  50. Sa-Ardyen, P., Vologodskii, A. V., & Seeman, N. C. (2003). The flexibility of DNA double crossover molecules. Biophysical Journal, 84, 3829–3837.

    Article  PubMed  CAS  Google Scholar 

  51. Winfree, E., Liu, F., Wenzler, L. A., Seeman, N. C. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature, 394, 539–544.

    Article  PubMed  CAS  Google Scholar 

  52. Liu, F., Sha, R., & Seeman, N. C. (1999). Modifying the surface features of two-dimensional DNA crystals. Journal of the American Chemical Society, 121, 917–922.

    Article  CAS  Google Scholar 

  53. Mao, C., Sun, W., & Seeman, N. C. (1999). Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society, 121, 5437–5443.

    Article  CAS  Google Scholar 

  54. Sha, R., Liu, F., Millar, D. P., & Seeman, N. C. (2000). Atomic force microscopy of parallel DNA branched junction arrays. Chemical Biology, 7, 743–751.

    Article  CAS  Google Scholar 

  55. Sha, R., Liu, F., & Seeman, N. C. (2002). Atomic force measurement of the interdomain angle in symmetric Holliday junctions. Biochemistry, 41, 5950–5955.

    Article  PubMed  CAS  Google Scholar 

  56. Ding, B., & Seeman, N. C. (2004) Pseudohexagonal 2D DNA crystals from double crossover cohesion. Journal of the American Chemical Society, 126, 10230–10231.

    Article  PubMed  CAS  Google Scholar 

  57. Xiao, S., Liu, F., Rosen, A., Hainfeld, J. F., Seeman, N. C., Musier-Forsyth, K. M., & Kiehl, R. A. (2002). Self-assembly of nanoparticle arrays by DNA scaffolding. Journal of Nanoparticle Research, 4, 313–317.

    Article  CAS  Google Scholar 

  58. Le, J. D., Pinto, Y., Seeman, N. C., Musier-Forsyth, K., Taton T. A., & Kiehl, R. A. (2004). Self-assembly of nanoelectronic component arrays by in situ hybridization to 2D DNA scaffolding. NanoLetters, 4, 2343–2347.

    CAS  Google Scholar 

  59. Pinto, Y. Y., Le, J. D., Seeman, N. C., Musier-Forsyth, K., Taton, T. A., & Kiehl, R. A. (2005). Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. NanoLetters, 5, 2399–2402.

    CAS  Google Scholar 

  60. Garibotti, A. V., Knudsen, S. M., Ellington, A. D., & Seeman, N. C. (2006). Functional DNAzymes organized into 2D arrays. NanoLetters, 6, 1505–1507.

    CAS  Google Scholar 

  61. Chhabra, R., Sharma, J., Liu, Y., & Yan, H. (2006). Addressable molecular tweezers for DNA-templated coupling reactions. NanoLetters, 6, 978–983.

    CAS  Google Scholar 

  62. Ding, B., & Seeman, N. C. (2006). Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science, 314, 1583–1585.

    Article  PubMed  CAS  Google Scholar 

  63. Yang, X., Vologodskii, A. V., Liu, B., Kemper, B., & Seeman, N. C. (1998). Torsional control of double stranded DNA branch migration. Biopolymers, 45, 69–83.

    Article  PubMed  CAS  Google Scholar 

  64. Rich, A., Nordheim, A., Wang, A. H.-J. (1984). The chemistry and biology of left-handed Z-DNA. Annual Review of Biochemistry, 53, 791–846.

    Article  PubMed  CAS  Google Scholar 

  65. Mao, C., Sun, W., Shen, Z., & Seeman, N. C. (1999). A DNA nanomechanical device based on the B-Z transition. Nature, 397, 144–146.

    Article  PubMed  CAS  Google Scholar 

  66. Yurke, B., Turberfield, A. J., Mills, A. P., Jr., Simmel, F. C., & Neumann, J. L. (2000). A DNA-fuelled molecular machine made of DNA. Nature, 406, 605–608.

    Article  PubMed  CAS  Google Scholar 

  67. Sherman, W. B., & Seeman, N. C. (2004). A precisely controlled DNA bipedal walking device. NanoLetters, 4, 1203–1207.

    CAS  Google Scholar 

  68. Shin, J.-S., & Pierce, N. A. (2004). A synthetic DNA walker for molecular transport. Journal of the American Chemical Society, 126, 10834–10835.

    Article  PubMed  CAS  Google Scholar 

  69. Tian, Y., He, Y., Chen, Y., Yin, P., & Mao, C. (2005). Molecular devices—A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie (International ed. in English), 44, 4355–4358.

    Article  CAS  Google Scholar 

  70. Dittmer, W. U., & Simmel, F. C. (2004). Transcriptional control of DNA-based nanomachines. NanoLetters, 4, 689–691.

    CAS  Google Scholar 

  71. Seeman, N. C. (2005). From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences, 30, 119–125.

    Article  PubMed  CAS  Google Scholar 

  72. Bath, J., & Turberfield, A. J. (2007). DNA nanomachines. Nature Nanotechnology, 2, 276–284.

    Article  CAS  Google Scholar 

  73. Feng, L., Park, S. H., Reif, J. H., & Yan, H. (2003). A two-state DNA lattice switched by DNA nanoactuator. Angewandte Chemie (International ed. in English), 42, 4342–4346.

    Article  CAS  Google Scholar 

  74. Liao, S., & Seeman, N. C. (2004). Translation of DNA signals into polymer assembly instructions. Science, 306, 2072–2074.

    Article  PubMed  CAS  Google Scholar 

  75. Adleman, L. (1994). Molecular computation of solutions to combinatorial problems. Science, 266, 1021–1024.

    Article  PubMed  CAS  Google Scholar 

  76. Grünbaum, B., & Shephard, G. C. (1986) Tilings & patterns. New York: Freeman.

    Google Scholar 

  77. Mao, C., LaBean, T., Reif, J. H., & Seeman, N. C. (2000). Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature, 407, 493–496.

    Article  PubMed  CAS  Google Scholar 

  78. Rothemund, P. W. K., Papadakis, N., & Winfree, E. (2004). Algorithmic self-assembly of DNA Sierpinski triangles. PLOS Biology 2, 2041–2053.

    Article  CAS  Google Scholar 

  79. Barish, R. D., Rothemund, P. W. K., & Winfree, E. (2005). Two computational primitives for algorithmic assembly: Copying and counting. NanoLetters, 5, 2586–2592.

    CAS  Google Scholar 

  80. Winfree, E. (2000). Algorithmic self-assembly of DNA: Theoretical motivations and 2D assembly experiments. Journal of Biomolecular Structure & Dynamics Conversat. 11(2), 263–270.

    Google Scholar 

  81. Lin, C. X., Katilius, E., Liu, Y., Zhang, J. P., & Yan, H. (2006). Self-assembled signaling aptamer DNA arrays for protein detection. Angewandte Chemie (International ed. in English), 45, 5296–5301.

    Article  CAS  Google Scholar 

  82. Seeman N. C. (1991). The construction of 3-D stick figures from branched DNA. DNA and Cell Biology, 10, 475–486.

    PubMed  CAS  Google Scholar 

  83. Eckardt, H. E., Naumann, K., Pankau, W. M., Rein, M., Schweitzer, M., Windhab, N., & von Kiedrowski, G. (2002). Chemical copying of connectivity. Nature, 420, 286.

    Article  PubMed  CAS  Google Scholar 

  84. Rothemund, P. W.K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.

    Article  PubMed  CAS  Google Scholar 

  85. Yan, H., LaBean, T. H., Feng, L., & Reif, J. H. (2003). Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proceedings of the National Academy of Sciences, 100, 8103–8108.

    Article  CAS  Google Scholar 

  86. Douglas, S. M., Chou, J. J., & Shih, W. M. (2007). DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proceedings of the National Academy of Sciences of the United States of America, 104, 6644–6648.

    Article  PubMed  CAS  Google Scholar 

  87. Mao, C. Constantinou, P. E., Liu, F., Pinto, Y., Kopatsch, J, Lukeman, P. S., Wang, T., Ding, B., Yan, H., Birktoft, J. J., Sha, R., Zhong, H., Foley, L., Wenzler, L. A., Sweet, R., Becker, M. & Seeman, N. C. (2005). The design of self-assembled 3D DNA networks. In M. Cahay, M. Urquidi-Macdonald, S. Bandyopadhyay, P. Guo, H. Hasegawa, N. Koshida, J. P. Leburton, D. J., Lockwood, S. Seal, & A. Stella (Eds.), Proceedings of the International Symposium on the Nanoscale Devices, Materials, and Biological Systems, 206th Meeting of the Electrochemical Society, PV 2004-XX (Vol. 13, pp. 509–520). Honolulu.

Download references

Acknowledgments

I am grateful to all of my students, postdocs and collaborators for their contributions to the founding of structural DNA nanotechnology. This research has been supported by grants GM-29554 from NIGMS, grants DMI-0210844, EIA-0086015, CCF-0432009, CCF-0523290 and CTS-0548774, CTS-0608889 from the NSF, 48681-EL from ARO, DE-FG02-06ER64281 from DOE (Subcontract from the Research Foundation of SUNY), and a grant from the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadrian C. Seeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeman, N.C. An Overview of Structural DNA Nanotechnology. Mol Biotechnol 37, 246–257 (2007). https://doi.org/10.1007/s12033-007-0059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0059-4

Keywords

Navigation