Skip to main content
Log in

Molecular Marker-Assisted Genotyping of Mungbean Yellow Mosaic India Virus Resistant Germplasms of Mungbean and Urdbean

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus begomovirus causes the yellow mosaic disease in a number of economically important edible grain legumes including mungbean (Vigna radiata), urdbean (Vigna mungo) and soybean (Glycine max). The disease is severe, critical, open spread and inflicts heavy yield losses annually. The objective of this study is to develop molecular markers linked to MYMIV-resistance to facilitate genotyping of urdbean and mungbean germplasms for MYMIV-reaction. Resistance-linked molecular markers were successfully developed from consensus motifs of other resistance (R) gene or R gene homologue sequences. Applying linked marker-assisted genotyping, plant breeders can carry out repeated genotyping throughout the growing season in absence of any disease incidence. Two MYMIV-resistance marker loci, YR4 and CYR1, were identified and of these two CYR1 is completely linked with MYMIV-resistant germplasms and co-segregating with MYMIV-resistant F2, F3 progenies of urdbean. The present study demonstrated that these two markers could be efficiently employed together in a multiplex-PCR-reaction for genotyping both V. mungo and V. radiata germplasms from field grown plants and also directly from the seed stock. This method of genotyping would save time and labour during the introgression of MYMIV-resistance through molecular breeding, as methods of phenotyping against begomoviruses are tedious, labour and time intensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagge, M., Xia, X., & Lübberstedt, T. (2007). Functional markers in wheat. Current Opinion in Plant Biology, 10, 211–216.

    Article  CAS  Google Scholar 

  2. Iyer-Pascuzzi, A. S., & McCouch, S. R. (2007). Functional markers for xa5-mediated resistance in rice (Oryza sativa L.). Molecular Breeding, 19, 291–296.

    Article  CAS  Google Scholar 

  3. Lübberstedt, T., Zein, I., Andersen, J. R., Wenzel, G., Krützfeldt, B., Eder, J., et al. (2005). Development and application of functional markers in maize. Euphytica, 146, 101–108.

    Article  Google Scholar 

  4. Mayo, M. A. (2005). Changes to virus taxonomy 2004. Archives of Virology, 150, 189–198.

    Article  CAS  Google Scholar 

  5. Basak, J., Kundagramy, S., Ghose, T. K., & Pal, A. (2005). Development of yellow mosaic virus (YMV) resistance linked DNA-marker in Vigna mungo from population segregating for YMV reaction. Molecular Breeding, 14, 375–383.

    Article  Google Scholar 

  6. Kundagrami, S., Basak, J., Maiti, S., Kundu, A., Das, B., Ghose, T. K., et al. (2009). Agronomic, genetic and molecular characterization of MYMIV-tolerant mutant lines of Vigna mungo. International Journal of Plant Breeding and Genetics, 3(1), 1–10.

    Article  CAS  Google Scholar 

  7. Souframanien, J., & Gopalakrishna, T. (2006). ISSR and SCAR markers linked to the mungbean yellow mosaic virus (MYMV) resistance gene in blackgram [Vigna mungo (L.) Hepper]. Plant Breeding, 125, 619–622.

    Article  CAS  Google Scholar 

  8. Flint-Garcia, S. A., Thornsberry, J. M., & Buckler, E. S. I. V. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 54, 357–374.

    Article  CAS  Google Scholar 

  9. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  Google Scholar 

  10. Gupta, P. K., Rustgi, S., & Kulwal, P. L. (2005). Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 57, 461–485.

    Article  CAS  Google Scholar 

  11. Kang, B. C., Yeam, I., & Jahn, M. M. (2005). Genetics of plant virus resistance. Annual Review of Phytopathology, 43, 581–621.

    Article  CAS  Google Scholar 

  12. Kanazin, V., Marek, L. F., & Shoemaker, R. C. (1996). Resistance gene analogs are conserved and clustered in soybean. Proceedings of the National Academy of Sciences of the United States of America, 93, 11746–11750.

    Article  CAS  Google Scholar 

  13. Yu, Y. G., Buss, G. R., & Maroof, M. A. (1996). Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proceedings of the National Academy of Sciences of the United States of America, 93, 11751–11756.

    Article  CAS  Google Scholar 

  14. Leister, D., Ballvora, A., Salamini, F., & Gebhardt, C. (1996). A PCR based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 14, 421–429.

    Article  CAS  Google Scholar 

  15. Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant Journal, 20, 317–332.

    Article  CAS  Google Scholar 

  16. Pan, Q., Wendel, J., & Fluhr, R. (2000). Divergent evolution of plant NBS–LRR resistance gene homologues in dicot and cereal genomes. Journal of Molecular Evolution, 50, 203–213.

    CAS  Google Scholar 

  17. Tian, Y., Fan, L., Thurau, T., Jung, C., & Cai, D. (2004). The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. Journal of Molecular Evolution, 58, 40–53.

    Article  CAS  Google Scholar 

  18. Tanhuanpaa, P. (2004). Identification and mapping of resistance gene analogs and a white rust resistance locus in Brassica rapa ssp Oleifera. Theoretical and Applied Genetics, 108, 1039–1046.

    Article  CAS  Google Scholar 

  19. He, L. M., Du, C. G., Covaleda, L., Xu, Z. Y., Robinson, A. F., Yu, J. Z., et al. (2004). Cloning, characterization, and evolution of the NBS–LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L). Molecular Plant-Microbe Interactions, 17, 1234–1241.

    Article  CAS  Google Scholar 

  20. Leal-Bertioli, S. C. M., Guimarães, P. M., & Bertioli, D. J. (2007). Targeting and genotyping RGAs in a mapping population of the AA genome of wild Arachis. Crop Breeding and Applied Biotechnology, 7, 179–185.

    CAS  Google Scholar 

  21. Xu, Q., Wen, X., & Deng, X. (2005). Isolation of TIR and nonTIR NBS–LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theoretical and Applied Genetics, 111, 819–830.

    Article  CAS  Google Scholar 

  22. Basak, J., Kundu, S., & Pal, A. (2007). Phylogenetic analysis of divergent structural organization of nucleotide binding domain encoded by resistance genes and gene homologs in the family Fabaceae. Indian Journal of Biotechnology, 6, 9–17.

    CAS  Google Scholar 

  23. Pal, A., Chakrabarti, A., & Basak, J. (2007). New motifs within the NB-ARC domain of R proteins: Probable mechanisms of integration of geminiviral signatures within the host species of Fabaceae family and implications in conferring disease resistance. Journal of Theoretical Biology, 246(3), 564–573.

    Article  CAS  Google Scholar 

  24. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  25. Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828–9832.

    Article  CAS  Google Scholar 

  26. Zaitlin, M., & Palukaitis, P. (2000). Advances in understanding plant viruses and virus diseases. Annual review of Phytopathology, 38, 117–143.

    Article  CAS  Google Scholar 

  27. Ritzenthaler, C. (2005). Resistance to plant viruses: old issue, new answers? Current Opinion in Biotechnology, 16, 118–122.

    Article  CAS  Google Scholar 

  28. Kamphuis, L. G., Lichtenzveig, J., Oliver, R. P., & Ellwood, S. R. (2008). Two alternative recessive quantitative trait loci influence resistance to spring black stem spot in Medicago truncatula. BMC Plant Biology, 8, 30–41.

    Article  Google Scholar 

  29. Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C., & Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell, 78, 1101–1115.

    Article  CAS  Google Scholar 

  30. Bendahmane, A., Kanyuka, K., & Baulcombe, D. C. (1999). The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell, 11, 781–792.

    Article  CAS  Google Scholar 

  31. Bendahmane, A., Querci, M., Kanyuka, K., & Baulcombe, D. C. (2000). Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant Journal, 21, 73–81.

    Article  CAS  Google Scholar 

  32. Brommonschenkel, S. H., Frary, A., & Tanksley, S. D. (2000). The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Molecular Plant–Microbe Interactions, 13, 1130–1138.

    Article  CAS  Google Scholar 

  33. Lanfermeijer, F. C., Dijkhuis, J., Sturre, M. J., de Haan, P., & Hille, J. (2003). Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2^2 from Lycopersicon esculentum. Plant Molecular Biology, 52, 1037–1049.

    Article  CAS  Google Scholar 

  34. Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P., & Klessig, D. F. (2000). Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell, 12, 663–676.

    Article  CAS  Google Scholar 

  35. Takahashi, H., Miller, J., Nozaki, Y., Takeda, M., Shah, J., Hase, S., et al. (2002). RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant Journal, 32, 655–667.

    Article  CAS  Google Scholar 

  36. Hayes, A. J., Jeong, S. C., Gore, M. A., Yu, Y. G., Buss, G. R., Tolin, S. A., et al. (2004). Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans. Genetics, 166, 493–503.

    Article  CAS  Google Scholar 

  37. Speulman, E., Bouchez, D., Holub, E. B., & Beynon, J. L. (1998). Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant Journal, 14, 467–474.

    Article  CAS  Google Scholar 

  38. Ashfield, T., Bocian, A., Held, D., Henk, A. D., Marek, L. F., Danesh, D., et al. (2003). Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS–LRR genes. Molecular Plant–Microbe Interactions, 16, 817–826.

    Article  CAS  Google Scholar 

  39. Radwan, O., Bouzidi, M. F., Nicolas, P., & Mouzeyar, S. (2004). Development of PCR markers of the PI5/PI8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC–NBS–LRR sequences. Theoretical and Applied Genetics, 109, 176–185.

    Article  CAS  Google Scholar 

  40. Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, B., & Aranda, M. A. (2004). Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology, 5(3), 223–233.

    Article  CAS  Google Scholar 

  41. Maule, A. J., Caranta, C., & Boulton, M. I. (2007). Sources of natural resistance to plant viruses: Status and prospects. Molecular Plant Pathology, 8, 223–231.

    Article  CAS  Google Scholar 

  42. Lee, S., Stenger, D., Bisaro, D., & Davis, K. (1994). Identification of loci in Arabidopsis that confer resistance to geminivirus infection. Plant Journal, 6, 525–535.

    Article  CAS  Google Scholar 

  43. Yoshii, M., Yoshioka, N., Ishikawa, M., & Naito, S. (1998). Isolation of an Arabidopsis thaliana mutant in which the multiplication of both Cucumber mosaic virus and Turnip Crinkle virus is affected. Journal of Virology, 72, 8731–8737.

    CAS  Google Scholar 

  44. Revers, F., Guiraud, T., Houvenaghel, M., Mauduit, T., Le Gall, O., & Candresse, T. (2003). Multiple resistance phenotypes to Lettuce mosaic virus among Arabidopsis thaliana accessions. Molecular Plant–Microbe Interactions, 16, 608–616.

    Article  CAS  Google Scholar 

  45. Hochholdinger, F., & Hoecker, N. (2007). Towards the molecular basis of heterosis. Trends in Plant Science, 12, 427–432.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Director, Bose Institute for providing us all the lab and field facilities and for a research fellowship to S.M, we also thank the Department of Biotechnology, India, for the financial assistance (Sanction no. BT/01/COE/06/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1a, b

PCR amplification of a polymorphic fragment (456 bp; a) with RGASF1/RGASR1 primers from MYMIV-tolerant lines, VM1, VM4 and VM6 and another fragment amplified with combination of RGA22F2/RGA24R2 primers (1236 bp; b); both are absent in the susceptible cultivar T-9 and in bulked susceptible F2 progenies (S bulk). Two representative phenotyped bulked resistant F2 samples (R bulk) amplified with the same primer pairs like the parental lines. M=Molecular weight marker. (JPEG 292 kb)

Supplementary Figure 2a, b

Germplasm screening for MYMIV-reaction of V. mungo employing markers, YR4 (a) and CYR1 (b). Sources of germplasms are given in Table 1. (JPEG 312 kb)

Supplementary Figure 3a, b

Germplasm screening of V. radiata employing markers, YR4 (a) and CYR1 (b). Sources of germplasms are given in Table 1. (JPEG 366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, S., Basak, J., Kundagrami, S. et al. Molecular Marker-Assisted Genotyping of Mungbean Yellow Mosaic India Virus Resistant Germplasms of Mungbean and Urdbean. Mol Biotechnol 47, 95–104 (2011). https://doi.org/10.1007/s12033-010-9314-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9314-1

Keywords

Navigation