Skip to main content

Advertisement

Log in

Selection of Suitable Reference Genes for Quantitative Real-Time PCR in Apoptosis-Induced MCF-7 Breast Cancer Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Apoptosis is induced in MCF-7 breast cancer cells following treatment with salicylic acid (20 mM), either in the presence or absence of a heat shock (42°C for 30 min). In order to study the alterations of apoptotic genes with quantitative real-time PCR (qPCR), suitable genes with unchanged expression following the treatments is required for normalizing the gene expression levels. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin (ACTB), Histone H2A (HIST), constitutively expressed heat shock protein 70 (HSC70) and tyrosine 3-monooxygenase/trytophan 5 monooxygenase activation protein, 14-3-3 (YWHAZ) were evaluated as appropriate reference genes. Analysis of gene expression data with one-way ANOVA, geNorm and NormFinder identified HIST and YWHAZ as the least affected during the induction of apoptosis by the different treatments, and is the most suitable gene-pair for normalization during qPCR analysis in MCF-7 breast cancer cells undergoing apoptosis following treatment with SA and/or HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kerr, J. F., Wylie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26(4), 239–257.

    Article  CAS  Google Scholar 

  2. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  CAS  Google Scholar 

  3. Kumar, S. (2007). Caspase function in programmed cell death. Cell Death and Differentiation, 14, 32–43.

    Article  CAS  Google Scholar 

  4. Galluzzi, L., Aaronson, S. A., Abrahms, J., Alnemri, E. S., Andrews, D. W., Baehrecke, E. H., et al. (2009). Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 16, 1093–1107.

    Article  CAS  Google Scholar 

  5. Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. Journal of Molecular Endocrinology, 29, 23–39.

    Article  CAS  Google Scholar 

  6. Bustin, S. A. (2010). Why the need for qPCR publication guidelines?—The case for MIQE. Methods, 50, 217–226.

    Article  CAS  Google Scholar 

  7. Derveaux, S., Vandesompele, J., & Hellemans, J. (2010). How to do successful gene expression analysis using real-time PCR. Methods, 50, 227–230.

    Article  CAS  Google Scholar 

  8. Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., & Hennen, G. (1999). Housekeeping genes as internal standards: Use and limits. Journal of Biotechnology, 75, 291–295.

    Article  CAS  Google Scholar 

  9. Bustin, S. A., & Nolan, T. (2004). Pitfalls of quantitative real-time reverse transcription polymerase chain reaction. Journal of Biomolecular Techniques, 15, 155–166.

    Google Scholar 

  10. Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., & Nguyen, M. (2010). A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods, 50, S1–S5.

    Article  CAS  Google Scholar 

  11. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 34.1–34.11.

    Article  Google Scholar 

  12. Erickson, H. S., Albert, P. S., Gillespie, J. W., Wallis, B. S., Rodriguez-Canales, J., Linehan, W. M., et al. (2007). Assessment of normalization strategies for quantitative RT-PCR using microdissected tissue samples. Laboratory Investigation, 87, 951–962.

    Article  CAS  Google Scholar 

  13. Suzuki, T., Higgins, P. J., & Crawford, D. R. (2000). Control selection for RNA quantitation. Biotechniques, 29, 332–337.

    CAS  Google Scholar 

  14. Mogal, A., & Abdulkadir, S. A. (2006). Effects of histone deacetylase inhibitor (HDACi); Trichostatin-A (TSA) on the expression of housekeeping genes. Molecular and Cellular Probes, 20, 81–86.

    Article  CAS  Google Scholar 

  15. Campos, M. S., Rodini, C. O., Pinto-Júnior, D. S., & Nunes, F. D. (2009). GAPD and tubulin are suitable internal controls for qPCR analysis of oral squamous cell carcinoma cell lines. Oral Oncology, 45, 121–126.

    Article  CAS  Google Scholar 

  16. Kastl, L., Brown, I., & Schofield, A. C. (2010). Effects of decitabine on the expression of selected endogenous control genes in human breast cancer cells. Molecular and Cellular Probes, 24, 87–92.

    Article  CAS  Google Scholar 

  17. Qi, L., & Sit, K. H. (2000). Suicidal differential housekeeping gene activity in apoptosis induced by DCNP. Apoptosis, 5, 379–388.

    Article  CAS  Google Scholar 

  18. Barnard, G. F., Staniunas, R. J., Bao, S., Manine, K., Steele, G. D., Jr., Gollan, J. L., et al. (1992). Increased expression of human ribosomal phosphoprotein P0 messenger RNA in hepatocellular carcinoma and colon carcinoma. Cancer Research, 52, 3067–3072.

    CAS  Google Scholar 

  19. Henry, J. L., Coggin, D. L., & King, C. R. (1993). High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer Research, 53, 1403–1408.

    CAS  Google Scholar 

  20. Vaarala, M. H., Porvari, K. S., Kyllonen, A. P., Mustonen, M. V. J., Lukkarinen, O., & Vihko, P. T. (1998). Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: Confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. International Journal of Cancer, 78, 27–32.

    Article  CAS  Google Scholar 

  21. Haller, F., Kulle, B., Schwager, S., Gunawan, B., von Heydebreck, A., Sültmann, H., et al. (2004). Equivalence test in quantitative reverse transcription polymerase chain reaction: Confirmation of reference genes suitable for normalization. Analytical Biochemistry, 335, 1–9.

    Article  CAS  Google Scholar 

  22. Gao, Q., Wang, X.-Y., Fan, J., Qiu, S.-J., Zhou, J., & Shi, Y.-H. (2008). Selection of reference genes for real-time PCR in human hepatocellular carcinoma tissues. Journal of Cancer Research and Clinical Oncology, 134, 979–986.

    Article  CAS  Google Scholar 

  23. Fu, L.-Y., Jia, H.-L., Dong, Q.-Z., Wu, J.-C., Zhao, Y., Zhou, H.-J., et al. (2009). Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses. BMC Cancer, 9, 49–60.

    Article  Google Scholar 

  24. Schek, N., Hall, B. L., & Finn, O. J. (1988). Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human pancreatic adenocarcinoma. Cancer Research, 48, 6354–6359.

    CAS  Google Scholar 

  25. Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  Google Scholar 

  26. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., & Kubista, M. (2009). The MIQE Guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611–622.

    Article  CAS  Google Scholar 

  27. Bellosillo, B., Piqué, M., Barragán, M., Castaño, E., Villamor, N., & Colomer, D. (1998). Aspirin and salicylate induce apoptosis and activation of caspases in B-cell chronic lymphocytic leukemia cells. Blood, 92(4), 1406–1414.

    CAS  Google Scholar 

  28. Piqué, M., Barragán, M., Dalmau, M., Bellosillo, B., Pons, G., & Gil, J. (2000). Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS Letters, 480, 193–196.

    Article  Google Scholar 

  29. Harris, R. E., Beebe-Donk, J., & Alshafie, G. A. (2006). Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer, 6, 27–31.

    Article  Google Scholar 

  30. Zerbini, L. F., Czibere, A., Wang, Y., Correa, R. G., Out, H., & Joseph, M. (2006). A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates non-steroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Research, 66(24), 11922–11931.

    Article  CAS  Google Scholar 

  31. Elder, D. J. E., Hague, A., Hicks, D. J., & Paraskeva, C. (1996). Differential growth inhibition by the aspirin metabolite salicylate in human colorectal tumor cell lines: Enhanced apoptosis in carcinoma and in vitro-transformed adenoma relative to adenoma cell lines. Cancer Research, 56, 2273–2276.

    CAS  Google Scholar 

  32. Klampfer, L., Cammenga, J., Wisniewski, H.-G., & Nimer, S. D. (1999). Sodium salicylate activates caspases and induces apoptosis of myeloid leukemia cell lines. Blood, 93(7), 2386–2394.

    CAS  Google Scholar 

  33. Sotiriou, C., Lacroix, M., Lagneaux, L., Berchem, G., & Body, J.-J. (1999). The aspirin metabolite salicylate inhibits breast cancer cells growth and their synthesis of the osteolytic cytokines interleukins-6 and -11. Anticancer Research, 19(4B), 2997–3006.

    CAS  Google Scholar 

  34. Vandaele, L., Goossens, K., Peelman, L., & Van Soom, A. (2008). mRNA expression of Bcl-2, Bax, caspase-3 and -7 cannot be used as a marker for apoptosis in bovine blastocysts. Animal Reproduction Science, 106, 168–173.

    Article  CAS  Google Scholar 

  35. Qi, L., & Sit, K. H. (2000). Housekeeping genes commanded to commit suicide in CpG-cleavage commitment upstream of Bcl-2 inhibition in caspase-dependent and -independent pathways. Molecular Cell Biology Research Communications, 3, 319–327.

    Article  CAS  Google Scholar 

  36. Chuang, D.-M., Hough, C., & Senatorov, V. V. (2005). Glyceraldehyde-3-phosphate dehydrogenase, apoptosis and neurodegenerative diseases. Annual Review of Pharmacology and Toxicology, 45, 269–290.

    Article  CAS  Google Scholar 

  37. Rho, H.-W., Lee, B.-C., Choi, E.-S., Choi, I.-J., Lee, Y.-S., & Goh, S.-H. (2010). Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR. BMC Cancer, 10, 240–252.

    Article  Google Scholar 

  38. Almeida, A., Thiery, J. P., Magdelénat, H., & Radvanyi, F. (2004). Gene expression analysis by real-time reverse transcription polymerase chain reaction: Influence of tissue handling. Analytical Biochemistry, 328, 101–108.

    Article  CAS  Google Scholar 

  39. Koyama, S., Takashima, Y., Sakurai, T., Suzuki, Y., Taki, M., & Miyakoshi, J. (2007). Effects of 2.45 GHz electromagnetic fields with a wide range of SARs on bacterial and HPRT gene mutations. Journal of Radiation Research, 48(1), 69–75.

    Article  CAS  Google Scholar 

  40. Nickells, R. W., & Browder, L. W. (1988). A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos. Journal of Cell Biology, 107, 1901–1909.

    Article  CAS  Google Scholar 

  41. Goidin, D., Mamessier, A., Staquet, M.-J., Schmitt, D., & Berthier-Vergnes, O. (2001). Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and β-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and non-invasive. Analytical Biochemistry, 295, 17–21.

    Article  CAS  Google Scholar 

  42. Aerts, J. L., Gonzales, M. I., & Topalian, S. L. (2004). Selection of appropriate control genes to assess expression of tumor antigens using realtime RT–PCR. Biotechniques, 36, 84–91.

    CAS  Google Scholar 

  43. Schimid, H., Cohen, C. D., Henger, A., Irrgang, S., Schlöndorff, D., & Kretzler, M. (2003). Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney International, 64, 356–360.

    Article  Google Scholar 

  44. Zhu, L.-J., & Altmann, S. W. (2005). mRNA and 18S-RNA coapplication–reverse transcription for quantitative gene expression analysis. Analytical Biochemistry, 345, 102–109.

    Article  CAS  Google Scholar 

  45. Robinson, T. L., Sutherland, I. A., & Sutherland, J. (2007). Validation of candidate bovine reference genes for use with real-time PCR. Veterinary Immunology and Immunopathology, 115, 160–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of South Africa and the Walker Trust Fund of the Faculty of Science, University of Johannesburg, South Africa.

Conflict of interest

The authors of this study have no conflicts of interest or any financial disclosures to make.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne J. Cronjé.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, E., Cronjé, M.J. Selection of Suitable Reference Genes for Quantitative Real-Time PCR in Apoptosis-Induced MCF-7 Breast Cancer Cells. Mol Biotechnol 50, 121–128 (2012). https://doi.org/10.1007/s12033-011-9425-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9425-3

Keywords

Navigation