Skip to main content
Log in

Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZαA vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k cat of 189.4 s−1 and K m of 28.26 mM while M12 GOx had k cat of 352.0 s−1 and K m of 13.33 mM for glucose at pH 5.5. Specificity constants k cat/K m of wt (6.70 mM−1 s−1) and M12 GOx (26.7 mM−1 s−1) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gibson, Q. H., Swoboda, B. E., & Massey, V. (1964). Kinetics and mechanism of action of glucose oxidase. The Journal of Biological Chemistry, 239, 3927–3934.

    CAS  Google Scholar 

  2. Swoboda, B. E., & Massey, V. (1965). Purification and properties of the glucose oxidase from Aspergillus Niger. The Journal of Biological Chemistry, 240, 2209–2215.

    CAS  Google Scholar 

  3. Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase: an overview. Biotechnology Advances, 27, 489–501.

    Article  CAS  Google Scholar 

  4. Leskovac, V., Trivic, S., Wohlfahrt, G., Kandrac, J., & Pericin, D. (2005). Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. International Journal of Biochemistry and Cell Biology, 37, 731–750.

    Article  CAS  Google Scholar 

  5. Zhu, Z., Momeu, C., Zakhartsev, M., & Schwaneberg, U. (2006). Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosensor and Bioelectronics, 21, 2046–2051.

    Article  CAS  Google Scholar 

  6. Wong, C. M., Wong, K. H., & Chen, X. D. (2008). Glucose oxidase: natural occurrence, function, properties and industrial applications. Applied Microbiology and Biotechnology, 78, 927–938.

    Article  CAS  Google Scholar 

  7. Cavalcanti, A., Shirinzadeh, B., & Kretly, L. C. (2008). Medical nanorobotics for diabetes control. Nanomedicine, 4, 127–138.

    Article  CAS  Google Scholar 

  8. Mano, N., Mao, F., & Heller, A. (2003). Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. Journal of the American Chemical Society, 125, 6588–6594.

    Article  CAS  Google Scholar 

  9. Liu, Q., Xu, X. H., Ren, G. L., & Wang, W. (2006). Enzymatic biofuel cells. Progress in Chemistry, 18, 1530–1537.

    CAS  Google Scholar 

  10. Prodanovic, R., Ostafe, R., Scacioc, A., & Schwaneberg, U. (2011). Ultrahigh-throughput screening system for directed glucose oxidase evolution in yeast cells. Combinatorial Chemistry and High Throughput Screening, 14, 55–60.

    Article  CAS  Google Scholar 

  11. Zhu, Z., Wang, M., Gautam, A., Nazor, J., Momeu, C., Prodanovic, R., et al. (2007). Directed evolution of glucose oxidase from Aspergillus niger for ferrocenemethanol-mediated electron transfer. Biotechnology Journal, 2, 241–248.

    Article  CAS  Google Scholar 

  12. Horaguchi, Y., Saito, S., Kojima, K., Tsugawa, W., Ferri, S., & Sode, K. (2012). Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity. International Journal of Molecular Sciences, 13, 14149–14157.

    Article  CAS  Google Scholar 

  13. Courjean, O., & Mano, N. (2011). Recombinant glucose oxidase from Penicillium amagasakiense for efficient bioelectrochemical applications in physiological conditions. Journal of Biotechnology, 151, 122–129.

    Article  CAS  Google Scholar 

  14. Li, P. Z., Anumanthan, A., Gao, X. G., Ilangovan, K., Suzara, V. V., Duzgunes, N., et al. (2007). Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology, 142, 105–124.

    Article  CAS  Google Scholar 

  15. Potvin, G., Ahmad, A., & Zhang, Z. S. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochemical Engineering Journal, 64, 91–105.

    Article  CAS  Google Scholar 

  16. Guo, Y., Lu, F., Zhao, H., Tang, Y., & Lu, Z. (2010). Cloning and heterologous expression of glucose oxidase gene from Aspergillus niger Z-25 in Pichia pastoris. Applied Biochemistry and Biotechnology, 162, 498–509.

    Article  CAS  Google Scholar 

  17. Zhou, Y. F., Zhang, X. E., Liu, H., Zhang, C. G., & Cass, A. E. (2001). Cloning and expression of Aspergillus niger glucose oxidase gene in methylotrophic yeast. Sheng Wu Gong Chenq Xue Bao, 17, 400–405.

    CAS  Google Scholar 

  18. Yamaguchi, M., Tahara, Y., Nakano, A., & Taniyama, T. (2007). Secretory and continuous expression of Aspergillus niger glucose oxidase gene in Pichia pastoris. Protein Expression and Purification, 55, 273–278.

    Article  CAS  Google Scholar 

  19. Wu, S. X., & Letchworth, G. J. (2004). High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. BioTechniques, 36, 152–154.

    CAS  Google Scholar 

  20. Blazic, M., Kovacevic, G., Prodanovic, O., Ostafe, R., Gavrovic-Jankulovic, M., Fischer, R., et al. (2013). Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases. Protein Expression and Purification, 89, 175–180.

    Article  CAS  Google Scholar 

  21. Hoenes, J., Mueller, P., & Surridge, N. (2008). The technology behind glucose meters: test strips. Diabetes Technology and Therapeutics, 10, S10–S26.

    Google Scholar 

  22. Momeu, I. C. (2007). Improving glucose oxidase properties by directed evolution. PhD thesis, Jacobs University Bremen, Germany.

Download references

Acknowledgments

This work was supported by Grant No. ON172049 and ON173017 sponsored by the Ministry of Education and Science, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radivoje Prodanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovačević, G., Blažić, M., Draganić, B. et al. Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H. Mol Biotechnol 56, 305–311 (2014). https://doi.org/10.1007/s12033-013-9709-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9709-x

Keywords

Navigation