Skip to main content
Log in

Real-Time PCR Quantification of the Plant Growth Promoting Bacteria Herbaspirillum seropedicae Strain SmR1 in Maize Roots

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The plant growth promoting bacteria Herbaspirillum seropedicae SmR1 is an endophytic diazotroph found in several economically important crops. Considering that methods to monitor the plant–bacteria interaction are required, our objective was to develop a real-time PCR method for quantification of PGPB H. seropedicae in the rhizosphere of maize seedlings. Primer pairs were designed, and their specificity was verified using DNA from 12 different bacterial species. Ten standard curves of qPCR assay using HERBAS1 primers and tenfold serial dilutions of H. seropedicae SmR1 DNA were performed, and PCR efficiency of 91 % and correlation coefficient of 0.99 were obtained. H. seropedicae SmR1 limit of detection was 101 copies (corresponding to 60.3 fg of bacterial DNA). qPCR assay using HERBAS1 was used to detect and quantify H. seropedicae strain SmR1 in inoculated maize roots, cultivated in vitro and in pots, harvested 1, 4, 7, and 10 days after inoculation. The estimated bacterial DNA copy number per gram of root was in the range 107–109 for plants grown in vitro and it was around 106 for plants grown in pots. Primer pair HERBAS1 was able to quantify H. seropedicae SmR1, and this assay can be useful for monitoring plant–bacteria interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersen, C. B., Holst-Jensen, A., Berdal, K. G., Thorstensen, T., & Tengs, T. (2006). Equal performance of TaqMan, MGB, molecular beacon, and SYBR green-based detection assays in detection and quantification of roundup ready soybean. Journal of Agricultural and Food Chemistry, 54(26), 9658–9663. doi:10.1021/jf061987c.

    Article  CAS  Google Scholar 

  2. Bal, H. B., Nayak, L., Das, S., & Adhya, T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil, 366(1–2), 93–105. doi:10.1007/s11104-012-1402-5.

    Article  CAS  Google Scholar 

  3. Baldani, J., Baldani, V., Seldin, L., & Dobereiner, J. (1986). Characterization of Herbaspirillum seropedicae Gen-Nov, Sp-Nov, a root-associated nitrogen-fixing bacterium. International Journal of Systematic Bacteriology, 36(1), 86–93.

    Article  CAS  Google Scholar 

  4. Baldani, J. I., Pot, B., Kirchhof, G., Falsen, E., Baldani, V. L. D., Olivares, F. L., et al. (1996). Emended description of Herbaspirillum; Inclusion of Pseudomonas rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb nov; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. International Journal of Systematic Bacteriology, 46(3), 802–810.

    Article  CAS  Google Scholar 

  5. Balsanelli, E., Serrato, R. V., de Baura, V. A., Sassaki, G., Yates, M. G., Rigo, L. U., et al. (2010). Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environmental Microbiology, 12(8), 2233–2244. doi:10.1111/j.1462-2920.2010.02187.x.

    CAS  Google Scholar 

  6. Bastian, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R., & Bottini, R. (1998). Production of indole-3-acetic acid and gibberellins A(1) and A(3) by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined culture media. Plant Growth Regulation, 24(1), 7–11. doi:10.1023/A:1005964031159.

    Article  CAS  Google Scholar 

  7. Baudoin, E., Couillerot, O., Spaepen, S., Moenne-Loccoz, Y., & Nazaret, S. (2010). Applicability of the 16S-23S rDNA internal spacer for PCR detection of the phytostimulatory PGPR inoculant Azospirillum lipoferum CRT1 in field soil. Journal of Applied Microbiology, 108(1), 25–38. doi:10.1111/j.1365-2672.2009.04393.x.

    Article  CAS  Google Scholar 

  8. Brusamarello-Santos, L. C. C., Pacheco, F., Aljanabi, S. M. M., Monteiro, R. A., Cruz, L. M., Baura, V. A., et al. (2012). Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant and Soil, 356(1–2), 113–125. doi:10.1007/s11104-011-1044-z.

    Article  CAS  Google Scholar 

  9. Cankar, K., Stebih, D., Dreo, T., Zel, J., & Gruden, K. (2006). Critical points of DNA quantification by real-time PCR: Effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnology, 6, 37. doi:10.1186/1472-6750-6-37.

    Article  Google Scholar 

  10. Chubatsu, L. S., Monteiro, R. A., de Souza, E. M., Schuler de Oliveira, M. A., Yates, M. G., Wassem, R., et al. (2012). Nitrogen fixation control in Herbaspirillum seropedicae. Plant and Soil, 356(1–2), 197–207. doi:10.1007/s11104-011-0819-6.

    Article  CAS  Google Scholar 

  11. Costa, J., Mafra, I., Kuchta, T., & Oliveira, M. B. P. P. (2012). Single-tube nested real-time PCR as a new highly sensitive approach to trace hazelnut. Journal of Agricultural and Food Chemistry, 60(33), 8103–8110. doi:10.1021/jf302898z.

    Article  CAS  Google Scholar 

  12. Couillerot, O., Bouffaud, M.-L., Baudoin, E., Muller, D., Caballero-Mellado, J., & Moenne-Loccoz, Y. (2010). Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biology & Biochemistry, 42(12), 2298–2305. doi:10.1016/j.soilbio.2010.09.003.

    Article  CAS  Google Scholar 

  13. de Souza, R., Beneduzi, A., Ambrosini, A., da Costa, P. B., Meyer, J., Vargas, L. K., et al. (2013). The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant and Soil, 366(1–2), 585–603. doi:10.1007/s11104-012-1430-1.

    Article  Google Scholar 

  14. Dinon, A., Prins, T., van Dijk, J., Arisi, A., Scholtens, I., & Kok, E. (2011). Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms. Analytical and Bioanalytical Chemistry, 400(5), 1433–1442. doi:10.1007/s00216-011-4875-9.

    Article  CAS  Google Scholar 

  15. Egener, T., Hurek, T., & Reinhold-Hurek, B. (1999). Endophytic expression of nif genes of Azoarcus sp strain BH72 in rice roots. Molecular Plant–Microbe Interactions, 12(9), 813–819. doi:10.1094/mpmi.1999.12.9.813.

    Article  CAS  Google Scholar 

  16. Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., et al. (2001). Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environment Microbiology, 67(11), 5285–5293. doi:10.1128/AEM.67.11.5285-. 5293.2001.

    Article  CAS  Google Scholar 

  17. Faleiro, A., Pereira, T., Espindula, E., Brod, F., & Arisi, A. (2013). Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosis, 61(3), 125–133. doi:10.1007/s13199-013-0262-y.

    Article  CAS  Google Scholar 

  18. Fan, B., Chen, X. H., Budiharjo, A., Bleiss, W., Vater, J., & Borriss, R. (2011). Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of Biotechnology, 151(4), 303–311. doi:10.1016/j.jbiotec.2010.12.022.

    Article  CAS  Google Scholar 

  19. Gaut, B. S., d’Ennequin, M. L., Peek, A. S., & Sawkins, M. C. (2000). Maize as a model for the evolution of plant nuclear genomes. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7008–7015. doi:10.1073/pnas.97.13.7008.

    Article  CAS  Google Scholar 

  20. Gyaneshwar, P., James, E. K., Reddy, P. M., & Ladha, J. K. (2002). Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytologist, 154(1), 131–145. doi:10.1046/j.1469-8137.2002.00371.x.

    Article  CAS  Google Scholar 

  21. James, E. K., Gyaneshwar, P., Mathan, N., Barraquio, Q. L., Reddy, P. M., Iannetta, P. P. M., et al. (2002). Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant–Microbe Interactions, 15(9), 894–906. doi:10.1094/mpmi.2002.15.9.894.

    Article  CAS  Google Scholar 

  22. James, E. K., & Olivares, F. L. (1998). Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Critical Reviews in Plant Sciences, 17(1), 77–119. doi:10.1016/s0735-2689(98)00357-8.

    Article  Google Scholar 

  23. James, E. K., Olivares, F. L., Baldani, J. I., & Dobereiner, J. (1997). Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L Moench. Journal of Experimental Botany, 48(308), 785–797. doi:10.1093/jxb/48.3.785.

    Article  CAS  Google Scholar 

  24. Kang, M., Kim, M., Hwang, D., Cho, M., Seol, Y., Hahn, J., et al. (2012). Quantitative in planta PCR assay for specific detection of Xanthomonas oryzae pv. oryzicola using putative membrane protein based primer set. Crop Protection, 40, 22–27. doi:10.1016/j.cropro.2012.04.014.

    Article  CAS  Google Scholar 

  25. Klassen, G., Pedrosa, F. O., Souza, E. M., Funayama, S., & Rigo, L. U. (1997). Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1. Canadian Journal of Microbiology, 43(9), 887–891.

    Article  CAS  Google Scholar 

  26. Liu, F. C., Xing, S. J., Ma, H. L., Du, Z. Y., & Ma, B. Y. (2013). Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings. Applied Microbiology and Biotechnology, 97(10), 4617–4625. doi:10.1007/s00253-012-4255-1.

    Article  CAS  Google Scholar 

  27. Monteiro, R. A., Balsanelli, E., Tuleski, T., Faoro, H., Cruz, L. M., Wassem, R., et al. (2012). Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing. FEMS Microbiology Ecology, 80(2), 441–451. doi:10.1111/j.1574-6941.2012.01309.x.

    Article  CAS  Google Scholar 

  28. Monteiro, R. A., Balsanelli, E., Wassem, R., Marin, A. M., Brusamarello-Santos, L. C. C., Schmidt, M. A., et al. (2012). Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant and Soil, 356(1–2), 175–196. doi:10.1007/s11104-012-1125-7.

    Article  CAS  Google Scholar 

  29. Monteiro, R. A., Schmidt, M. A., de Baura, V. A., Balsanelli, E., Wassem, R., Yates, M. G., et al. (2008). Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genetics and Molecular Biology, 31(4), 932–937. doi:10.1590/s1415-47572008005000007.

    Article  Google Scholar 

  30. Pedrosa, F. O., Monteiro, R. A., Wassem, R., Cruz, L. M., Ayub, R. A., Colauto, N. B., et al. (2011). Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. Plos Genetics, 7(5), e1002064. doi:10.1371/journal.pgen.1002064.

    Article  CAS  Google Scholar 

  31. Raj, M., Jeeva, M. L., Hegde, V., Vidyadharan, P., Archana, P. V., Senthil alias Sankar, M., et al. (2012). Polymerase chain reaction assay for rapid, sensitive detection, and identification of Colletotrichum gloeosporioides causing greater yam anthracnose. Molecular Biotechnology, 52(3), 277–284. doi:10.1007/s12033-012-9496-9.

    Article  Google Scholar 

  32. Rashid, S., Charles, T. C., & Glick, B. R. (2012). Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 61, 217–224. doi:10.1016/j.apsoi1.2011.09.011.

    Article  Google Scholar 

  33. Rodriguez-Salazar, J., Suarez, R., Caballero-Mellado, J., & Iturriaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiology Letters, 296(1), 52–59. doi:10.1111/j.1574-6968.2009.01614.x.

    Article  CAS  Google Scholar 

  34. Roncato-Maccari, L. D. B., Ramos, H. J. O., Pedrosa, F. O., Alquini, Y., Chubatsu, L. S., Yates, M. G., et al. (2003). Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiology Ecology, 45(1), 39–47. doi:10.1016/s0168-6496(03)00108-9.

    Article  CAS  Google Scholar 

  35. Roncato-Maccari, L. D. B., Ramos, H. J. O., Pedrosa, F. O., Alquini, Y., Chubatsu, L. S., Yates, M. G., et al. (2003). Root colonization, systemic spreading and contribution of Herbaspirillum seropedicae to growth of rice seedling. Symbiosis, 35(1–3), 261–270.

    Google Scholar 

  36. Ruppel, S., Ruhlmann, J., & Merbach, W. (2006). Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant and Soil, 286(1–2), 21–35. doi:10.1007/s11104-006-9023-5.

    Article  CAS  Google Scholar 

  37. Schmidt, M., Souza, E., Baura, V., Wassem, R., Yates, M., Pedrosa, F., et al. (2011). Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Brazilian Journal of Medical and Biological Research, 44(3), 182–185. doi:10.1590/S0100-879X2011007500004.

    Article  CAS  Google Scholar 

  38. Schnable, P. S. (2012). The B73 maize genome: Complexity, diversity, and dynamics (November, pg 1112, 2009). Science, 337(6098), 1040.

    Article  CAS  Google Scholar 

  39. Shime-Hattori, A., Kobayashi, S., Ikeda, S., Asano, R., Shime, H., & Shinano, T. (2011). A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria. Journal of Applied Microbiology, 111(4), 915–924. doi:10.1111/j.1365-2672.2011.05115.x.

    Article  CAS  Google Scholar 

  40. Stets, M. I., Pinto, A. S, Jr, Huergo, L. F., de Souza, E. M., Guimaraes, V. F., Alves, A. C., et al. (2013). Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. Journal of Biotechnology, 165(3–4), 167–174. doi:10.1016/j.jbiotec.2013.04.001.

    Article  CAS  Google Scholar 

  41. Su’udi, M., Kim, J., Park, J.-M., Bae, S.-C., Kim, D., Kim, Y.-H., et al. (2013). Quantification of rice blast disease progressions through Taqman real-time PCR. Molecular Biotechnology, 55(1), 43–48. doi:10.1007/s12033-012-9632-6.

    Article  Google Scholar 

  42. Taule, C., Mareque, C., Barlocco, C., Hackembruch, F., Reis, V. M., Sicardi, M., et al. (2012). The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant and Soil, 356(1–2), 35–49. doi:10.1007/s11104-011-1023-4.

    Article  CAS  Google Scholar 

  43. Timmusk, S., Paalme, V., Lagercrantz, U., & Nevo, E. (2009). Detection and quantification of Paenibacillus polymyxa in the rhizosphere of wild barley (Hordeum spontaneum) with real-time PCR. Journal of Applied Microbiology, 107(3), 736–745. doi:10.1111/j.1365-2672.2009.04265.x.

    Article  CAS  Google Scholar 

  44. Verma, S. C., Ladha, J. K., & Tripathi, A. K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology, 91(2–3), 127–141. doi:10.1016/s0168-1656(01)00333-9.

    Article  CAS  Google Scholar 

  45. Videira, S. S., de Oliveira, D. M., de Morais, R. F., Borges, W. L., Divan Baldani, V. L., & Baldani, J. I. (2012). Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. genotypes grown in the field. Plant and Soil, 356(1–2), 51–66. doi:10.1007/s11104-011-1082-6.

    Article  CAS  Google Scholar 

  46. Zhang, T., & Fang, H. H. (2006). Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology, 70(3), 281–289. doi:10.1007/s00253-006-0333-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Fábio de Oliveira Pedrosa, Leda Chubatsu, and Michelle Tadra-Sfeir, Universidade Federal do Paraná, for providing A. brasilense strain FP2, H. seropedicae strain SmR1, and other Herbaspirillum, to Luciane Passaglia for providing Rhizobium, Microbacterium, and Pseudomonas. This work was financially supported by the National Institute of Science and Technology—Biological Nitrogen Fixation, INCT-FBN, CNPq, Ministry of Science and Technology, Brazil. TPP, FPA, and PD were recipients of Master and PhD fellowships from CAPES, Ministry of Education, Brazil. FCAB is recipient of post-doctoral fellowship from CAPES PNPD, and ACMA is recipient of research fellowship from CNPq (PQ-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Maisonnave Arisi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, T.P., do Amaral, F.P., Dall’Asta, P. et al. Real-Time PCR Quantification of the Plant Growth Promoting Bacteria Herbaspirillum seropedicae Strain SmR1 in Maize Roots. Mol Biotechnol 56, 660–670 (2014). https://doi.org/10.1007/s12033-014-9742-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9742-4

Keywords

Navigation