Skip to main content
Log in

Enhancing Cellulase and Hemicellulase Production in Trichoderma orientalis EU7-22 via Knockout of the creA

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The role of the transcription factor creA-mediating carbon catabolite repression in Trichoderma orientalis EU7-22 was investigated for cellulase and hemicellulase production. The binary vector pUR5750G/creA::hph was constructed to knock out creA by homologous integration, generating the ΔcreA mutant Trichoderma orientalis CF1D. For strain CF1D, the filter paper activities (FPA), endoglucanase activities (CMC), cellobiohydrolase activity(CBH), β-glucosidase activity (BG), xylanase activity (XYN), and extracellular protein concentration were 1.45-, 1.15-, 1.71-, 2.51-, 2.72, and 1.95-fold higher in inducing medium and were 6.41-, 7.50-, 10.27-, 11.79-, 9.25-, and 3.77-fold higher in glucose repressing medium, respectively, than those in the parent strain after 4 days. SDS–PAGE demonstrated that the extracellular proteins were largely secreted in the mutant CF1D. Quantitative reverse-transcription polymerase chain reaction indicated that the expressions of cbh1, cbh2, eg1, eg2, bgl1, xyn1, and xyn2 were significantly increasing for the mutant CF1D not only in the inducing medium but also in the repressing medium. Those results indicated that creA was a valid target gene in strain engineering for improved enzyme production in T. orientalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kamm, B., & Kamm, M. (2007). Biorefineries—Multi product processes. Advances in Biochemical Engineering/Biotechnology, 105, 175–204.

    Article  CAS  Google Scholar 

  2. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  3. Kovács, K., Szakacs, G., & Zacchi, G. (2009). Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresource Technology, 100, 1350–1357.

    Article  Google Scholar 

  4. Sipos, B., Benko, Z., Dienes, D., Réczey, K., Viikari, L., & Siika-aho, M. (2010). Characterisation of specific activities and hydrolytic properties of cell-wall degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Applied Biochemistry and Biotechnology, 161, 347–364.

    Article  CAS  Google Scholar 

  5. Portnoy, T., Margeot, A., Linke, R., Atanasova, L., Fekete, E., Sándor, E., et al. (2011). The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: A master regulator of carbon assimilation. BMC Genomics, 12(269), 1–12.

    Google Scholar 

  6. Takashima, S., Iikura, H., Nakamura, A., Masaki, H., & Uozumi, T. (1996). Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. FEMS Microbiology Letters, 145, 361–366.

    Article  CAS  Google Scholar 

  7. Cubero, B., & Scazzocchio, C. (1994). Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO Journal, 13, 407–415.

    CAS  Google Scholar 

  8. Drysdale, M. R., Kolze, S. E., & Kelly, J. M. (1993). The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene, 130, 241–245.

    Article  CAS  Google Scholar 

  9. Sun, J., & Glass, N. L. (2011). Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS ONE, 6, e25654.

    Article  CAS  Google Scholar 

  10. Long, C. N., Cheng, Y. J., Gan, L. H., Liu, J., & Long, M. N. (2013). Identification of a genomic region containing a novel promoter resistant to glucose repression and over-expression of β-glucosidase gene in Hypocrea orientalis EU7-22. International Journal of Molecular Sciences, 14(4), 8479–8490.

    Article  Google Scholar 

  11. Penttilä, M., Nevalainen, H., Rättö, M., Salminen, E., & Knowles, J. (1987). A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 61, 155–164.

    Article  Google Scholar 

  12. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  13. Saha, B. C. (2014). Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochemistry, 39, 1871–1876.

    Article  Google Scholar 

  14. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  15. Nakari-Setälä, T., Paloheimo, M., Kallio, J., Vehmaanperä, J., Penttilä, M., & Saloheimo, M. (2009). Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Applied and Environment Microbiology, 75, 4853–4860.

    Article  Google Scholar 

  16. Mach-Aigner, A. R., Pucher, M. E., Steiger, M. G., Bauer, G. E., Preis, S. J., & Mach, R. L. (2008). Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Applied and Environment Microbiology, 74, 6554–6562.

    Article  CAS  Google Scholar 

  17. Ries, L., Belshaw, N. J., Ilmén, M., Penttilä, M. E., Alapuranen, M., & Archer, D. B. (2014). The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Applied Microbiology and Biotechnology, 98, 749–762.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31170067, 21303142), Jiangxi Province Science Foundation for Youths (Grant No. 20161BAB214177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minnan Long.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, C., Cheng, Y., Cui, J. et al. Enhancing Cellulase and Hemicellulase Production in Trichoderma orientalis EU7-22 via Knockout of the creA . Mol Biotechnol 60, 55–61 (2018). https://doi.org/10.1007/s12033-017-0046-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0046-3

Keywords

Navigation