Skip to main content
Log in

Synthetic Promoters from Strawberry Vein Banding Virus (SVBV) and Dahlia Mosaic Virus (DaMV)

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We have constructed two intra-molecularly shuffled promoters, namely S100 and D100. The S100 recombinant promoter (621 bp) was generated by ligation of 250 bp long upstream activation sequence (UAS) of Strawberry vein banding virus (SV10UAS; − 352 to − 102 relative to TSS) with its 371 bp long TATA containing core promoter domain (SV10CP; − 352 to + 19). Likewise, 726 bp long D100 promoter was constructed by fusion of 170 bp long UAS of Dahlia mosaic virus (DaMV14UAS; − 203 to − 33) with its 556 bp long core promoter domain (DaMV4CP; − 474 to + 82). S100 and D100 promoters showed 1.8 and 2.2 times stronger activities than that of the CaMV35S promoter. The activity of the promoters is comparable to that of the CaMV35S2 promoter. Transcript analysis employing qRT-PCR and histochemical assays supported the above findings. Abscisic acid and salicylic acid induce the activity of the D100 promoter. Leaf protein obtained from Nicotiana tabacum plant expressing NSD2 gene (Nigella sativa L. defensin 2) driven by the D100 promoter showed antifungal activity against Alternaria alternata and Phoma exigua var. exigua and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Strong S100 and D100 promoters have potential to become efficient candidates for plant metabolic engineering and molecular pharming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geering, A. D. W. (2014). Caulimoviridae (plant pararetroviruses). eLS.New York: Wiley.

    Google Scholar 

  2. Dey, N., Sarkar, S., Acharya, S., & Maiti, I. B. (2015). Synthetic promoters in planta. Planta, 242(5), 1077–1094.

    Article  CAS  PubMed  Google Scholar 

  3. Venter, M. (2007). Synthetic promoters: genetic control through cis engineering. Trends in Plant Science, 12(3), 118–124.

    Article  CAS  PubMed  Google Scholar 

  4. Ranjan, R., & Dey, N. (2012). Development of vascular tissue and stress inducible hybrid-synthetic promoters through DOF-1 motifs rearrangement. Cell Biochemistry and Biophysics, 63(3), 235–245.

    Article  CAS  PubMed  Google Scholar 

  5. Aysha, J., Noman, M., Wang, F., Liu, W., Zhou, Y., Li, H., & Li, X. (2018). Synthetic promoters: designing the cis regulatory modules for controlled gene expression. Molecular Biotechnology, 60(8), 608–620.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta, D., Dey, N., Leelavathi, S., & Ranjan, R. (2021). Development of efficient synthetic promoters derived from pararetrovirus suitable for translational research. Planta, 253(2), 1–15.

    Article  CAS  Google Scholar 

  7. Acharya, S., Sengupta, S., Patro, S., Purohit, S., Samal, S. K., Maiti, I. B., & Dey, N. (2014). Development of an intra-molecularly shuffled efficient chimeric plant promoter from plant infecting Mirabilis mosaic virus promoter sequence. Journal of Biotechnology, 169, 103–111.

    Article  CAS  PubMed  Google Scholar 

  8. Deb, D., Shrestha, A., Maiti, I. B., & Dey, N. (2018). Recombinant promoter (MUASCsV8CP) driven totiviral killer protein 4 (KP4) imparts resistance against fungal pathogens in transgenic tobacco. Frontiers in Plant Science, 9, 278.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sahoo, D. K., Sarkar, S., Raha, S., Das, N. C., Banerjee, J., Dey, N., & Maiti, I. B. (2015). Analysis of dahlia mosaic virus full-length transcript promoter-driven gene expression in transgenic plants. Plant Molecular Biology Reporter, 33(2), 178–199.

    Article  CAS  Google Scholar 

  10. Pattanaik, S., Dey, N., Bhattacharyya, S., & Maiti, I. B. (2004). Isolation of full-length transcript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Science, 167(3), 427–438.

    Article  CAS  Google Scholar 

  11. Bennett, A., Ponder, M. M., & Garcia-Diaz, J. (2018). Phoma infections: Classification, potential food sources, and their clinical impact. Microorganisms, 6(3), 58.

    Article  CAS  PubMed Central  Google Scholar 

  12. Meena, M., Gupta, S. K., Swapnil, P., Zehra, A., Dubey, M. K., & Upadhyay, R. S. (2017). Alternaria toxins: Potential virulence factors and genes related to pathogenesis. Frontiers in Microbiology, 8, 1451.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pitt, J. I., Hocking, A. D., Bhudhasamai, K., Miscamble, B. F., Wheeler, K. A., & Tanboon-Ek, P. (1993). The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. International Journal of Food Microbiology, 20(4), 211–226.

    Article  CAS  PubMed  Google Scholar 

  14. Kövics, G. J., De Gruyter, J., & Van Deraa, H. A. (1999). Phoma sojicola comb. nov. and other hyaline-spored coelomycetes pathogenic on soybean. Mycological Research, 103(8), 1065–1070.

    Article  Google Scholar 

  15. A’Hara, D. (2015). Detection and identification of Phoma pathogens of potato. Plant pathology (pp. 17–27). Berlin: Springer.

    Chapter  Google Scholar 

  16. Oliveira, R. C., Goncalves, S. S., Oliveira, M. S., Dilkin, P., Mallmann, C. A., Freitas, R. S., Correa, B., et al. (2017). Natural occurrence of tenuazonic acid and Phoma sorghina in Brazilian sorghum grains at different maturity stages. Food Chemistry, 230, 491–496.

    Article  CAS  PubMed  Google Scholar 

  17. Sørensen, J. L., Aveskamp, M. M., Thrane, U., & Andersen, B. (2010). Chemical characterization of Phoma pomorum isolated from Danish maize. International Journal of Food Microbiology, 136(3), 310–317.

    Article  PubMed  CAS  Google Scholar 

  18. Eckert, J. W., & Ogawa, J. M. (1988). The chemical control of postharvest diseases: Deciduous fruits, berries, vegetables and root/tuber crops. Annual Review of Phytopathology, 26(1), 433–469.

    Article  CAS  Google Scholar 

  19. Mamgain, A., Roychowdhury, R., & Tah, J. (2013). Alternaria pathogenicity and its strategic controls. Research Journal of Biology, 1, 1–9.

    Google Scholar 

  20. Meena, M., & Samal, S. (2019). Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicology Reports, 6, 745–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bodey, G. P., Bolivar, R., Fainstein, V., & Jadeja, L. (1983). Infections caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases, 5(2), 279–313.

    Article  CAS  PubMed  Google Scholar 

  22. Gnanamani, A., Hariharan, P., & Paul-Satyaseela, M. (2017). Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. Frontiers in Staphylococcus aureus, 4, 28.

    Google Scholar 

  23. Lowy, F. D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339(8), 520–532.

    Article  CAS  PubMed  Google Scholar 

  24. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Caleya, R. F., Gonzalez-Pascual, B., Garcia-Olmedo, F., & Carbonero, P. (1972). Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Applied Microbiology, 23(5), 998–1000.

    Article  PubMed Central  Google Scholar 

  26. Rogozhin, E. A., Oshchepkova, Y. I., Odintsova, T. I., Khadeeva, N. V., Veshkurova, O. N., Egorov, T. A., Salikhov, S. I., et al. (2011). Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiology and Biochemistry, 49(2), 131–137.

    Article  CAS  PubMed  Google Scholar 

  27. Dey, N., & Maiti, I. B. (1999). Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Molecular Biology, 40(5), 771–782.

    Article  CAS  PubMed  Google Scholar 

  28. Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F., & Hunt, A. G. (1987). Design and construction of a versatile system for the expression of foreign genes in plants. Gene, 61(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  29. Patro, S., Kumar, D., Ranjan, R., Maiti, I. B., & Dey, N. (2012). The development of efficient plant promoters for transgene expression employing plant virus promoters. Molecular Plant, 5(4), 941–944.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, D., Patro, S., Ghosh, J., Das, A., Maiti, I. B., & Dey, N. (2012). Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root-and leaf-activity using TGACG motif rearrangement. Gene, 503(1), 36–47.

    Article  CAS  PubMed  Google Scholar 

  31. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  32. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, H., Nelson, R. S., & Sherwood, J. L. (1994). Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. BioTechniques, 16(4), 664–668.

    CAS  PubMed  Google Scholar 

  34. Deb, D., & Dey, N. (2019). Synthetic Salicylic acid inducible recombinant promoter for translational research. Journal of Biotechnology, 297, 9–18.

    Article  CAS  PubMed  Google Scholar 

  35. Kroumova, A. B. M., Sahoo, D. K., Raha, S., Goodin, M., Maiti, I. B., & Wagner, G. J. (2013). Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. Plant Cell Reports, 32(11), 1771–1782.

    Article  CAS  PubMed  Google Scholar 

  36. Mardanova, E. S., Blokhina, E. A., Tsybalova, L. M., Peyret, H., Lomonossoff, G. P., & Ravin, N. V. (2017). Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of potato virus X. Frontiers in Plant Science, 8, 247.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maiti, S., Patro, S., Purohit, S., Jain, S., Senapati, S., & Dey, N. (2014). Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2. Antimicrobial Agents and Chemotherapy, 58(11), 6896–6903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rombauts, S., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Daami-Remadi, M., Souissi, A., Oun, H. B., Mansour, M., & Nasraoui, B. (2009). Salinity effects on Fusarium wilt severity and tomato growth. Dynamic Soil, Dynamic Plant, 3(1), 61–69.

    Google Scholar 

  41. Ladányi, M., & Horváth, L. (2010). A review of the potential climate change impact on insect populations-general and agricultural aspects. Applied Ecology and Environmental Research, 8(2), 143–152.

    Article  Google Scholar 

  42. Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31–43.

    Article  Google Scholar 

  43. Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557–572.

    Article  CAS  Google Scholar 

  44. Amack, S. C., & Antunes, M. S. (2020). CaMV35S promoter: A plant biology and biotechnology workhorse in the era of synthetic biology. Current Plant Biology, 1, 100179.

    Article  Google Scholar 

  45. Alireza, T., & Nader, R. E. (2015). Molecular farming in plants. Plants for future (pp. 25–41). London: Intech Open.

    Google Scholar 

  46. Khan, A., Shrestha, A., Bhuyan, K., Maiti, I. B., & Dey, N. (2018). Structural characterization of a novel full-length transcript promoter from Horseradish Latent Virus (HRLV) and its transcriptional regulation by multiple stress responsive transcription factors. Plant Molecular Biology, 96(1), 179–196.

    Article  CAS  PubMed  Google Scholar 

  47. Banerjee, J., Sahoo, D. K., Raha, S., Sarkar, S., Dey, N., & Maiti, I. B. (2015). A region containing an as-1 element of Dahlia Mosaic Virus (DaMV) subgenomic transcript promoter plays a key role in green tissue-and root-specific expression in plants. Plant Molecular Biology Reporter, 33(3), 532–556.

    Article  CAS  Google Scholar 

  48. Sarkar, S., Das, A., Khandagale, P., Maiti, I. B., Chattopadhyay, S., & Dey, N. (2018). Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta. Planta, 247(1), 181–199.

    Article  CAS  PubMed  Google Scholar 

  49. Sahoo, D. K., Stork, J., DeBolt, S., & Maiti, I. B. (2013). Manipulating cellulose biosynthesis by expression of mutant Arabidopsis proM24: CESA3ixr1-2 gene in transgenic tobacco. Plant Biotechnology Journal, 11(3), 362–372.

    Article  CAS  PubMed  Google Scholar 

  50. Sarkar, S., Jain, S., Rai, V., Sahoo, D. K., Raha, S., Suklabaidya, S., Dey, N., et al. (2015). Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells. Frontiers in Plant Science, 6, 822.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lim, C. W., Baek, W., Jung, J., Kim, J.-H., & Lee, S. C. (2015). Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 16(7), 15251–15270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chinnusamy, V., Gong, Z., & Zhu, J. (2008). Abscisic acid-mediated epigenetic processes in plant development and stress responses. Journal of Integrative Plant Biology, 50(10), 1187–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321–3338.

    Article  CAS  PubMed  Google Scholar 

  54. Chandra, H., Bishnoi, P., Yadav, A., Patni, B., Mishra, A. P., & Nautiyal, A. R. (2017). Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—A review. Plants, 6(2), 16.

    Article  PubMed Central  CAS  Google Scholar 

  55. Khamkar, A. D., Motghare, V. M., & Deshpande, R. (2015). Ethnopharmacology—A novel approach for drug discovery. Indian Journal of Pharmaceutical and Pharmacology, 2(Suppl 4), 222–225.

    Article  Google Scholar 

  56. Savoia, D. (2012). Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiology, 7(8), 979–990.

    Article  CAS  PubMed  Google Scholar 

  57. Wally, O., & Punja, Z. K. (2010). Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops, 1(4), 199–206.

    Article  PubMed  Google Scholar 

  58. Mithra, S. V. A., Kulkarni, K., & Srinivasan, R. (2017). Plant promoters: characterization and applications in transgenic technology. Plant biotechnology: Principles and applications (pp. 117–172). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nrisingha Dey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Supplementary file2 (DOCX 596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadanga, B., Chanwala, J., Sandeep, I.S. et al. Synthetic Promoters from Strawberry Vein Banding Virus (SVBV) and Dahlia Mosaic Virus (DaMV). Mol Biotechnol 63, 792–806 (2021). https://doi.org/10.1007/s12033-021-00344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00344-5

Keywords

Navigation