Skip to main content

Advertisement

Log in

METTL14-Mediated miR-30c-1-3p Maturation Represses the Progression of Lung Cancer via Regulation of MARCKSL1 Expression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lung cancer (LC) is a pulmonary malignant tumor with extremely low 5-year survival rate. N6-methyladenosine (m6A) is confirmed to regulate diverse pathophysiological processes including cancers. Methyltransferase-like 14 (METTL14) is an important RNA methyltransferase in m6A modification. However, researches on the regulatory mechanism of METTL14 on LC progression are relatively rare. Tumor xenograft experiment was conducted to investigate the effect of METTL14 on LC in vivo. The relative expression of METTL14, miR-30c-1-3p, and myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1) in LC tissues and/or cell lines was determined using qRT-PCR. Western blot assay was used to measure the protein levels of METTL14 and MARCKSL1 in tumor xenograft model and/or LC cell lines. MTT, wound healing, and transwell assays were performed to detect LC cell viability and metastasis. RNA immunoprecipitation assay and qRT-PCR were used to verify the effects of METTL14 on pri-miR-30c-1-3p. The relationship between miR-30c-1-3p and MARCKSL1 was confirmed by the dual-luciferase reporter assay. METTL14 was remarkably downregulated in LC tissues and cell lines. METTL14 mediated the maturation of miR-30c-1-3p. The overexpressed METTL14 and overexpressed miR-30c-1-3p suppressed the cell viability and metastasis in LC. Meanwhile, the increased METTL14 also repressed the growth of tumor xenograft in vivo. In addition, MARCKSL1 was confirmed to be the target gene of miR-30c-1-3p. High expression of MARCKSL1 and low expression of miR-30c-1-3p reversed the suppressive effects of METTL14 overexpression on cell viability and metastasis. METTL14 promoted the maturation of miR-30c-1-3p and mediated MARCKSL1 expression to inhibit the progression of LC. This study may provide a new insight for the LC clinical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Travis, W. D. (2020). Lung cancer pathology: Current concepts. Clinics in Chest Medicine, 41(1), 67–85. https://doi.org/10.1016/j.ccm.2019.11.001

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  3. Ridge, C. A., McErlean, A. M., & Ginsberg, M. S. (2013). Epidemiology of lung cancer. Seminars in Interventional Radiology, 30(2), 93–98. https://doi.org/10.1055/s-0033-1342949

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hussain, S. (2016). Nanomedicine for treatment of lung cancer. Advances in Experimental Medicine and Biology, 890, 137–147. https://doi.org/10.1007/978-3-319-24932-2_8

    Article  PubMed  Google Scholar 

  5. Quaratino, S., Forssmann, U., & Marschner, J. P. (2017). New approaches in immunotherapy for the treatment of lung cancer. Current Topics in Microbiology and Immunology, 405, 1–31. https://doi.org/10.1007/82_2014_428

    Article  PubMed  CAS  Google Scholar 

  6. Detterbeck, F. C., Boffa, D. J., Kim, A. W., & Tanoue, L. T. (2017). The Eighth Edition Lung Cancer Stage Classification. Chest, 151(1), 193–203. https://doi.org/10.1016/j.chest.2016.10.010

    Article  PubMed  Google Scholar 

  7. Cantara, W. A., Crain, P. F., Rozenski, J., McCloskey, J. A., Harris, K. A., Zhang, X., Vendeix, F. A., Fabris, D., & Agris, P. F. (2011). The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Research, 39(Database Issue), D195-201. https://doi.org/10.1093/nar/gkq1028

    Article  PubMed  CAS  Google Scholar 

  8. Machnicka, M. A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Kalinowski, S., Dunin-Horkawicz, S., Rother, K. M., Helm, M., Bujnicki, J. M., & Grosjean, H. (2013). MODOMICS: A database of RNA modification pathways—2013 Update. Nucleic Acids Research, 41(Database Issue), D262-267. https://doi.org/10.1093/nar/gks1007

    Article  PubMed  CAS  Google Scholar 

  9. Frye, M., Harada, B. T., Behm, M., & He, C. (2018). RNA modifications modulate gene expression during development. Science, 361(6409), 1346–1349. https://doi.org/10.1126/science.aau1646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lee, M., Kim, B., & Kim, V. N. (2014). Emerging roles of RNA modification: m(6)A and U-tail. Cell, 158(5), 980–987. https://doi.org/10.1016/j.cell.2014.08.005

    Article  PubMed  CAS  Google Scholar 

  11. Gu, C., Wang, Z., Zhou, N., Li, G., Kou, Y., Luo, Y., Wang, Y., Yang, J., & Tian, F. (2019). Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1. Molecular Cancer, 18(1), 168. https://doi.org/10.1186/s12943-019-1084-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jin, D., Guo, J., Wu, Y., Du, J., Yang, L., Wang, X., Di, W., Hu, B., An, J., Kong, L., Pan, L., & Su, G. (2019). m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. Journal of Hematology and Oncology, 12(1), 135. https://doi.org/10.1186/s13045-019-0830-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Qian, J. Y., Gao, J., Sun, X., Cao, M. D., Shi, L., Xia, T. S., Zhou, W. B., Wang, S., Ding, Q., & Wei, J. F. (2019). KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene, 38(33), 6123–6141. https://doi.org/10.1038/s41388-019-0861-z

    Article  PubMed  CAS  Google Scholar 

  14. Selberg, S., Blokhina, D., Aatonen, M., Koivisto, P., Siltanen, A., Mervaala, E., Kankuri, E., & Karelson, M. (2019). Discovery of small molecules that activate RNA methylation through cooperative binding to the METTL3-14-WTAP complex active site. Cell Reports, 26(13), 3762-3771.e3765. https://doi.org/10.1016/j.celrep.2019.02.100

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, S., Zhao, B. S., Zhou, A., Lin, K., Zheng, S., Lu, Z., Chen, Y., Sulman, E. P., Xie, K., Bogler, O., Majumder, S., He, C., & Huang, S. (2017). m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell, 31(4), 591-606.e596. https://doi.org/10.1016/j.ccell.2017.02.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., Huang, H., Nachtergaele, S., Dong, L., Hu, C., Qin, X., Tang, L., Wang, Y., Hong, G. M., Wang, X., Chen, P., Gurbuxani, S., Arnovitz, S., Li, Y., Li, S., et al. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell, 31(1), 127–141. https://doi.org/10.1016/j.ccell.2016.11.017

    Article  PubMed  CAS  Google Scholar 

  17. Tiwari, N., Tiwari, V. K., Waldmeier, L., Balwierz, P. J., Arnold, P., Pachkov, M., Meyer-Schaller, N., Schubeler, D., van Nimwegen, E., & Christofori, G. (2013). Sox4 is a master regulator of epithelial–mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell, 23(6), 768–783. https://doi.org/10.1016/j.ccr.2013.04.020

    Article  PubMed  CAS  Google Scholar 

  18. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B. S., Mesquita, A., Liu, C., Yuan, C. L., Hu, Y. C., Huttelmaier, S., Skibbe, J. R., Su, R., Deng, X., Dong, L., Sun, M., Li, C., Nachtergaele, S., Wang, Y., et al. (2018). Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 20(3), 285–295. https://doi.org/10.1038/s41556-018-0045-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhao, B. S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuuspalu, A., Ho, R. K., & He, C. (2017). m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 542(7642), 475–478. https://doi.org/10.1038/nature21355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lin, Z., Hsu, P. J., Xing, X., Fang, J., Lu, Z., Zou, Q., Zhang, K. J., Zhang, X., Zhou, Y., Zhang, T., Zhang, Y., Song, W., Jia, G., Yang, X., He, C., & Tong, M. H. (2017). Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Research, 27(10), 1216–1230. https://doi.org/10.1038/cr.2017.117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., Jiao, F., Liu, H., Yang, P., Tan, L., Lan, F., Shi, Y. G., Shi, Y., & Diao, J. (2018). Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Molecular Cell, 69(6), 1028-1038.e1026. https://doi.org/10.1016/j.molcel.2018.02.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fustin, J. M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., Yoshida, M., Isagawa, T., Morioka, M. S., Kakeya, H., Manabe, I., & Okamura, H. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell, 155(4), 793–806. https://doi.org/10.1016/j.cell.2013.10.026

    Article  PubMed  CAS  Google Scholar 

  23. Xiang, Y., Laurent, B., Hsu, C. H., Nachtergaele, S., Lu, Z., Sheng, W., Xu, C., Chen, H., Ouyang, J., Wang, S., Ling, D., Hsu, P. H., Zou, L., Jambhekar, A., He, C., & Shi, Y. (2017). RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature, 543(7646), 573–576. https://doi.org/10.1038/nature21671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., Lv, J., Heng, J., Ding, Y., Xue, Y., Lu, X., Xiao, W., Yang, Y. G., & Liu, F. (2017). m(6)A modulates haematopoietic stem and progenitor cell specification. Nature, 549(7671), 273–276. https://doi.org/10.1038/nature23883

    Article  PubMed  CAS  Google Scholar 

  25. Li, H. B., Tong, J., Zhu, S., Batista, P. J., Duffy, E. E., Zhao, J., Bailis, W., Cao, G., Kroehling, L., Chen, Y., Wang, G., Broughton, J. P., Chen, Y. G., Kluger, Y., Simon, M. D., Chang, H. Y., Yin, Z., & Flavell, R. A. (2017). m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 548(7667), 338–342. https://doi.org/10.1038/nature23450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Du, C., Lv, C., Feng, Y., & Yu, S. (2020). Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. Journal of Experimental and Clinical Cancer Research, 39(1), 223. https://doi.org/10.1186/s13046-020-01735-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Strick, A., von Hagen, F., Gundert, L., Klumper, N., Tolkach, Y., Schmidt, D., Kristiansen, G., Toma, M., Ritter, M., & Ellinger, J. (2020). The N(6)-methyladenosine (m(6) A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma. BJU International, 125(4), 617–624. https://doi.org/10.1111/bju.15019

    Article  PubMed  CAS  Google Scholar 

  28. Lin, S., Choe, J., Du, P., Triboulet, R., & Gregory, R. I. (2016). The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Molecular Cell, 62(3), 335–345. https://doi.org/10.1016/j.molcel.2016.03.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Weng, L., Qiu, K., Gao, W., Shi, C., & Shu, F. (2020). LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR-433-3p to upregulate WTAP. BMC Pulmonary Medicine, 20(1), 213. https://doi.org/10.1186/s12890-020-01240-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang, H., Zhao, X., & Lu, Z. (2021). m(6)A RNA methylation regulators act as potential prognostic biomarkers in lung adenocarcinoma. Frontiers in Genetics, 12, 622233. https://doi.org/10.3389/fgene.2021.622233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhu, Z., Qian, Q., Zhao, X., Ma, L., & Chen, P. (2020). N(6)-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene, 731, 144348. https://doi.org/10.1016/j.gene.2020.144348

    Article  PubMed  CAS  Google Scholar 

  32. Li, J., Han, Y., Zhang, H., Qian, Z., Jia, W., Gao, Y., Zheng, H., & Li, B. (2019). The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochemical and Biophysical Research Communications, 512(3), 479–485. https://doi.org/10.1016/j.bbrc.2019.03.093

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, Y., Liu, X., Liu, L., Li, J., Hu, Q., & Sun, R. (2020). Expression and prognostic significance of m6A-related genes in lung adenocarcinoma. Medical Science Monitor, 26, e919644. https://doi.org/10.12659/MSM.919644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen, X., Xu, M., Xu, X., Zeng, K., Liu, X., Pan, B., Li, C., Sun, L., Qin, J., Xu, T., He, B., Pan, Y., Sun, H., & Wang, S. (2020). METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Molecular Cancer, 19(1), 106. https://doi.org/10.1186/s12943-020-01220-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li, F., Wang, H., Huang, H., Zhang, L., Wang, D., & Wan, Y. (2020). m6A RNA methylation regulators participate in the malignant progression and have clinical prognostic value in lung adenocarcinoma. Frontiers in Genetics, 11, 994. https://doi.org/10.3389/fgene.2020.00994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guo, H., Ingolia, N. T., Weissman, J. S., & Bartel, D. P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308), 835–840. https://doi.org/10.1038/nature09267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cai, X., Wang, X., Cao, C., Gao, Y., Zhang, S., Yang, Z., Liu, Y., Zhang, X., Zhang, W., & Ye, L. (2018). HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Letters, 415, 11–19. https://doi.org/10.1016/j.canlet.2017.11.018

    Article  PubMed  CAS  Google Scholar 

  38. Ma, J. Z., Yang, F., Zhou, C. C., Liu, F., Yuan, J. H., Wang, F., Wang, T. T., Xu, Q. G., Zhou, W. P., & Sun, S. H. (2017). METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary microRNA processing. Hepatology, 65(2), 529–543. https://doi.org/10.1002/hep.28885

    Article  PubMed  CAS  Google Scholar 

  39. Yi, D., Wang, R., Shi, X., Xu, L., Yilihamu, Y., & Sang, J. (2020). METTL14 promotes the migration and invasion of breast cancer cells by modulating N6methyladenosine and hsamiR146a5p expression. Oncology Reports, 43(5), 1375–1386. https://doi.org/10.3892/or.2020.7515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bi, X., Lv, X., Liu, D., Guo, H., Yao, G., Wang, L., Liang, X., & Yang, Y. (2020). METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Therapy. https://doi.org/10.1038/s41417-020-00222-3

    Article  PubMed  Google Scholar 

  41. Chen, X., Xu, M., Xu, X., Zeng, K., Liu, X., Sun, L., Pan, B., He, B., Pan, Y., Sun, H., Xia, X., & Wang, S. (2020). METTL14 suppresses CRC progression via regulating N6-methyladenosine-dependent primary miR-375 processing. Molecular Therapy, 28(2), 599–612. https://doi.org/10.1016/j.ymthe.2019.11.016

    Article  PubMed  CAS  Google Scholar 

  42. Zhang, B. Y., Han, L., Tang, Y. F., Zhang, G. X., Fan, X. L., Zhang, J. J., Xue, Q., & Xu, Z. Y. (2020). METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. European Review for Medical and Pharmacological Sciences, 24(12), 7015–7023. https://doi.org/10.26355/eurrev_202006_21694

    Article  PubMed  Google Scholar 

  43. Kordass, T., Weber, C. E. M., Eisel, D., Pane, A. A., Osen, W., & Eichmuller, S. B. (2018). miR-193b and miR-30c-1(*) inhibit, whereas miR-576-5p enhances melanoma cell invasion in vitro. Oncotarget, 9(65), 32507–32522. https://doi.org/10.18632/oncotarget.25986

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, X., Zhang, G., Huang, H., Li, H., Lin, S., & Wang, Y. (2020). Differentially expressed microRNAs in radioresistant and radiosensitive atypical meningioma: A clinical study in Chinese patients. Frontiers in Oncology, 10, 501. https://doi.org/10.3389/fonc.2020.00501

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen, W., Yao, G., & Zhou, K. (2019). miR-103a-2-5p/miR-30c-1-3p inhibits the progression of prostate cancer resistance to androgen ablation therapy via targeting androgen receptor variant 7. Journal of Cellular Biochemistry, 120(8), 14055–14064. https://doi.org/10.1002/jcb.28680

    Article  PubMed  CAS  Google Scholar 

  46. Wu, M., Liang, G., Duan, H., Yang, X., Qin, G., & Sang, N. (2019). Synergistic effects of sulfur dioxide and polycyclic aromatic hydrocarbons on pulmonary pro-fibrosis via mir-30c-1-3p/ transforming growth factor beta type II receptor axis. Chemosphere, 219, 268–276. https://doi.org/10.1016/j.chemosphere.2018.12.016

    Article  PubMed  CAS  Google Scholar 

  47. Li, T., Li, D., Sha, J., Sun, P., & Huang, Y. (2009). MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochemical and Biophysical Research Communications, 383(3), 280–285. https://doi.org/10.1016/j.bbrc.2009.03.077

    Article  PubMed  CAS  Google Scholar 

  48. Salem, O., Erdem, N., Jung, J., Munstermann, E., Worner, A., Wilhelm, H., Wiemann, S., & Korner, C. (2016). The highly expressed 5′isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics, 17, 566. https://doi.org/10.1186/s12864-016-2869-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu, H., Su, P., Zhi, L., & Zhao, K. (2017). miR34c3p acts as a tumor suppressor gene in osteosarcoma by targeting MARCKS. Molecular Medicine Reports, 15(3), 1204–1210. https://doi.org/10.3892/mmr.2017.6108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Liang, W., Gao, R., Yang, M., Wang, X., Cheng, K., Shi, X., He, C., Li, Y., Wu, Y., Shi, L., Chen, J., & Yu, X. (2020). MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncology Letters, 19(3), 2272–2280. https://doi.org/10.3892/ol.2020.11313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu, X., Xiao, M., Zhang, L., Li, L., Zhu, G., Shen, E., Lv, M., Lu, X., & Sun, Z. (2020). The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway. Journal of Clinical Laboratory Analysis. https://doi.org/10.1002/jcla.23655

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jonsdottir, K., Zhang, H., Jhagroe, D., Skaland, I., Slewa, A., Bjorkblom, B., Coffey, E. T., Gudlaugsson, E., Smaaland, R., Janssen, E. A., & Baak, J. P. (2012). The prognostic value of MARCKS-like 1 in lymph node-negative breast cancer. Breast Cancer Research Treatment, 135(2), 381–390. https://doi.org/10.1007/s10549-012-2155-9

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FL and YC; Methodology: W L; Formal analysis and investigation: FL, XH, and LW; Writing-original draft preparation: FL; Writing-review and editing: WL, YC, and JZ; Funding acquisition: FL; Resources: XH and LW; Supervision: YC.

Corresponding author

Correspondence to Fei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. The present study was approved by Ethics Committee of Peoples Hospital of Rizhao, and the relevant informed consents were written by each patient.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(JPG 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhao, J., Wang, L. et al. METTL14-Mediated miR-30c-1-3p Maturation Represses the Progression of Lung Cancer via Regulation of MARCKSL1 Expression. Mol Biotechnol 64, 199–212 (2022). https://doi.org/10.1007/s12033-021-00406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00406-8

Keywords

Navigation