Skip to main content
Log in

Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the synthetic temperature conditions. Even a very low Au content of 0.09 wt% is sufficient enough to bring in the transition from sponge state to gel state at room temperature. Higher synthetic temperature also forms sponge formation. Infrared and ultraviolet–visible spectroscopy measurements have provided insight into PDMS crosslinking and nanoparticle formation, respectively. The optimization of the gel properties can have direct influence on the processability of Au nanoparticle–PDMS nanocomposite gels, with interesting implications in electronic, optical and microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Takahashi H, Ishimuro Y and Watanabe H 2006 Nihon Reoroji Gakk 34 135

  2. Mark J E 2004 Acc. Chem. Res. 37 946

  3. Rajan G, Sur G, Mark J, Schaefer D and Beaucage G 2003 J. Polym. Sci. Pol. Phys. 41 1897

  4. Qin D, Xia Y and Whitesides G M 2010 Nat. Protoc. 5 491

  5. Lacour S P, Wagner S, Huang Z and Suo Z 2003 Appl. Phys. Lett. 82 2404

  6. Adrega T and Lacour S P 2010 J. Micromech. Microeng. 20 055025

  7. Buyl F D 2001 Int. J. Adhes. Adhes. 21 411

  8. Rosen M R 2005 Delivery system handbook for personal care and cosmetic products: technology, applications and formulations (Norwich, NY: William Andrew Publishing) ISBN: 978-0-8155-1504-3

  9. Kumar S K and Krishnamoorti R 2010 Annu. Rev. Chem. Biomol. Eng. 1 37

  10. Niu X Z, Peng S L, Liu L Y, Wen W J and Sheng P 2007 Adv. Mater. 19 2682

  11. Cong H and Pan T 2008 Adv. Funct. Mater. 18 1912

  12. Kujawski M, Pearse J D and Smela E 2010 Carbon 48 2409

  13. Zhang Y, Sheehan C J, Zhai J, Zou G, Luo H, Xiong J, Zhu Y T and Jia Q X 2010 Adv. Mater. 22 3027

  14. Hong J, Lee J, Hong C K and Shim S E 2010 Curr. Appl. Phys. 10 359

  15. Liu C H and Fan S S 2005 Appl. Phys. Lett. 86 123106

  16. Mackay M E 2006 Science 311 1740

  17. Kayatin M J and Davis V A 2009 Macromolecules 42 6624

  18. Moreira L, Fulchiron R, Seytre G, Dubois P and Cassagnau P 2010 Macromolecules 43 1467

  19. Anderson B J and Zukoski C F 2010 Langmuir 26 8709

  20. Huang Y Y, Ahir S V and Terentjev E M 2006 Phys. Rev. B 73 125422

  21. Bokobza L and Diop A L 2010 Express Polym. Lett. 4 355

  22. Austin J R and Kontopoulou M 2006 Polym. Eng. Sci. 46 1491

  23. Guimont A, Beyou E, Martin G, Sonntag P and Cassagnau P 2011 Macromolecules 44 3893

  24. Marceau S, Dubois P, Fulchiron R and Cassagnau P 2011 Macromolecules 44 3893

  25. Takahashi H, Ishimuro Y and Watanabe H 2007 Nihon Reoroji Gakk 35 191

  26. Scott A, Gupta R and Kulkarni G U 2010 Macromol. Chem. Phys. 211 1640

  27. Muñoz P, Patricia M A and Vargas M D 2001 J. Appl. Polym. Sci. 82 3460

  28. Zhang Q, Xu J J, Liu Y and Chen H Y 2008 Lab. Chip 8 352

  29. Zhang Q, Xu J J, Liua Y and Chen H Y 2008 Lab. Chip 8 352

  30. Goyal A, Kumar A, Patra P K, Mahendra S, Tabatabaei S, Alvarez P. J J, John G and Ajayan P M 2009 Rapid Commun. 30 1116

  31. Rau K R, Singh R and Goldberg E 2002 Mat. Res. Innovat. 5 162

  32. Cai D and Neyer A 2010 Microfluid Nanofluid 9 855

  33. Bhattacharya S, Srivastava A and Pal A 2006 Angew. Chem. Int. Ed. 45 2934

  34. Thomas S and Stephen R 2009 Rubber nanocomposites: preparation, properties and applications (Wiley) ISBN: 978-0-470-82345-3

  35. Walberer J A and McHugh A J 2001 J. Rheol. 45 187

Download references

Acknowledgements

We thank Professor CNR Rao for his encouragement. Support from the Department of Science and Technology, Government of India, is gratefully acknowledged. RG thanks ICMS, JNCASR for financial support. Thanks to K Veeresh and Swati (CPMU, JNCASR) for their assistance in gel preparation and B Vanitha for manuscript formatting.

Electronic Supplementary Material

Electronic Supplementary Material Supplementary Material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GIRIDHAR U KULKARNI.

Additional information

GIRIDHAR U KULKARNI is on lien from JNCASR, Bangalore 560064, India

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 4.94 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUPTA, R., NAGAMANASA, H.K., GANAPATHY, R. et al. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels. Bull Mater Sci 38, 817–823 (2015). https://doi.org/10.1007/s12034-015-0957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0957-1

Keywords

Navigation