Skip to main content
Log in

Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Polyaniline/zirconium oxide (PANI/ZrO2) nanocomposites have been synthesized by incorporating ZrO2 nanoparticles into the PANI matrix via liquid–liquid interfacial polymerization method. The composite formation and structural changes in PANI/ZrO2 nanocomposites were investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). PXRD pattern of PANI/ZrO2 nanocomposites exhibited sharp and well-defined peaks of monoclinic phase of ZrO2 in PANI matrix. SEM images of the composites showed that ZrO2 nanoparticles were dispersed in the PANI matrix. The FT-IR analysis revealed that there was strong interaction between PANI and ZrO2. AC conductivity and dielectric properties of the nanocomposites were studied in the frequency range, 50–106 Hz. AC conductivity of the nanocomposites obeyed the power law indicating the universal behaviour of disordered media. The nanocomposites showed high dielectric constant in the order of 104, which could be related to dielectric relaxation phenomenon. Further, the materials were checked for their supercapacitance performance by using cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). Among the synthesized nanocomposites, PANI/ZrO2-25 wt.% showed a higher specific capacitance of 341 F g−1 at 2 m Vs−1 and good cyclic stability with capacitance retention of about 88% even after 500 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang Y Z, Gebler D D, Fu D K, Swager T M and Epstein A J 1997 Appl. Phys. Lett. 70 3215

    Article  Google Scholar 

  2. Yao B, Wang G, Ye J and Li X 2008 Mater. Lett. 62 1775

    Article  Google Scholar 

  3. Lina Geng, Yingqiang Zhao, Xueliang Huang, Shurong, Shoumin Zhang and Shihua Wu 2007 Sensor. Actuat. B Chem. 120 568

  4. Khuspe G D, Bandgar D K, Sen S. and Patil V B 2012 Synth. Met. 162 1822

    Article  Google Scholar 

  5. Li D, Huang J and Kaner R B 2009 Acc. Chem. Res. 42 135

    Article  Google Scholar 

  6. Li Q H, Wu J H, Tang Q W, Lan Z, Li P J, Lin J M and Fan L Q 2008 Electrochem. Commun. 10 1299

    Article  Google Scholar 

  7. Hui Guan, Li-Zhen Fan, Hongchang Zhang and Xuanhui Qu 2010 Electrochim. Acta 56 964

  8. Jianhua L, Junwei A, Yecheng Z, Yuxiao M, Mengliu L, Mei Y and Songmei L 2012 ACS Appl. Mater. Interfaces 4 2870

    Article  Google Scholar 

  9. Snook G A, Kao P and Best A S 2011 J. Power Sources 196 1

    Article  Google Scholar 

  10. Zhao L, Zhao L, Xu Y, Qiu T, Zhi L and Shi G 2009 Electrochim. Acta 55 491

    Article  Google Scholar 

  11. Liu J L, Zhou M Q, Fan L Z, Li P and Qu X H 2010 Electrochim. Acta 55 5819

    Article  Google Scholar 

  12. Mandic Z, Rokovic M K and Pokupcic T 2009 Electrochim. Acta 54 2941

    Article  Google Scholar 

  13. Li J B, Jia Q M, Zhu J W and Zheng M S 2008 Polym. Int. 57 337

    Article  Google Scholar 

  14. Tran H D, Wang Y, D‘Arcy J M and Kaner R B 2008 ACS Nano 2 1841

    Article  Google Scholar 

  15. Huang J X and Kaner R B 2004 J. Am. Chem. Soc. 126 851

    Article  Google Scholar 

  16. Huang J X and Kaner R B 2004 Angew. Chem. Int. Ed. 43 5817

    Article  Google Scholar 

  17. Subramania A and Devi S L 2008 Polym. Adv. Technol. 19 725

    Article  Google Scholar 

  18. Ghenaatian H R, Mousavi M F, Kazemi S H and Shamsipur M 2009 Synth. Met. 159 1717

    Article  Google Scholar 

  19. Yuhong Jin, Shuo Huang, Mei Zhang and Mengqiu Jia 2013 Synth. Met. 168 58

  20. Ahmad Abdolahi, Esah Hamzah, Zaharah Ibrahim and Shahrir Hashim 2012 Materials 5 1487

  21. Jiahua Zhu, Minjiao Chen, Honglin Qu, Xi Zhang, Huige Wei, Zhiping Luo et al 2012 Polymer 53 5953

  22. Yuhong Jin and Mengqiu Jia 2014 Synth. Met. 189 47

  23. Wanga J -G, Yangb Y, Huanga Z -H and Kanga F 2012 J. Power Sources 204 236

    Article  Google Scholar 

  24. Chandramika Bora, Amarjyoti Kalita, Dhaneswar Das, Swapan K Doluia and Pratip Kr Mukhopadhyay 2013 Polym. Int. 63 445

  25. Akash Katoch, Markus Burkhart, Taejin Hwang and Sang Sub Kim 2012 Chem. Eng. J. 192 262

  26. Khuspe G D, Navale S T, Chougule M A, Shashwati Sen, Agawane G L, Kim J H and Patil V B 2013 Synth. Met. 178 1

    Article  Google Scholar 

  27. Xiazhang Li, Chaoying Ni, Chao Yao and Zhigang Chen 2012 Appl. Catal. B Environ. 117–118 118

  28. Vassen R, Cao X, Tietz F, Basu D and Stover D 2000 J. Am. Cer. Soc. 83 2023

    Article  Google Scholar 

  29. Steele B C H and Heinzel A 2001 Nature 414 345

    Article  Google Scholar 

  30. Mohammad Bagher Gholivand and Leila Mohammadi-Behzad 2014 J. Electroanal. Chem. 712 33

  31. Gupta K, Jana P C and Meikap A K 2011 J. Appl. Phys. 109 123713

  32. Rajeev Jain, Dinesh C Tiwari and Swati Shrivastava 2014 J. Electrochem. Soc. 161 B39

  33. Asif Ali Khan and Leena Paquiza 2011 Desalination 265 242

  34. Tarique Anwer, Mohd Omaish Ansari and Faiz Mohammad 2013 J. Ind. Eng. Chem. 19 1653

  35. Nasibi M, Golozar M A and Rashed G 2012 J. Power Sources 206 108

  36. Wei Zhang, Yueyue Tan, Yilong Gao, Jianxiang Wu and Bohejin Tang 2015 Ceram. Int. 41 2626

  37. Ko Y N, Choi S H, Kang Y C and Park S B 2013 ACS Appl. Mater. Interf. 5 3234

    Article  Google Scholar 

  38. Yinhai Zhu, Enhui Liu, Zhenyu Luo, Tiantian Hu, Tiantian Liu, Zengpeng Li and Qingling Zhao 2014 Electrochim. Acta 118 106

  39. Sahu H R and Rao G R 2000 B. Mater. Sci. 23 349

    Article  Google Scholar 

  40. Bowen C R, Dent A C E, Almond D P and Comyn T P 2008 Ferroelectrics 370 166

    Article  Google Scholar 

  41. Jing Jiang, Lun-Hong Ai, Da-Bin Qin, Hui Liu and Liang-Chao Li 2009 Synth. Met. 159 695

  42. Kim H M, Lee C Y and Joo J 2000 J. Kor. Phys. Soc. 36 371

    Google Scholar 

  43. Hazarika J and Kumar A 2014 Synth. Met. 198 239

    Article  Google Scholar 

  44. Hui D, Alexandrescu R, Chipara M, Morjan I, Aldica G., Chipara M D and Lau K T 2004 J. Optoelect. Adv. Mater. 6 817

    Google Scholar 

  45. Farrukh Iqbal Dar, Kevin Radakishna Moonooswamy and Mohammed Es-Souni 2013 Nanoscale Res. Lett. 8 1

  46. Zhe-Fei Li, Hangyu Zhang, Qi Liu, Yadong Liu, Lia Stanciu and Jian Xie 2014 Carbon 7I 257

  47. Soumen Giri, Debasis Ghosh and Chapal Kumar Das 2014 Adv. Funct. Mater. 24 1312

  48. Zan Gao, Wanlu Yang, Jun Wang, Huijun Yan, Yuan Yao, Jing Ma et al 2015 Electrochim. Acta 91 185

  49. Xu Ji, Shuang Cheng, LufengYang, Yu Jiang, Zhong-Jie Jiang, Chenghao Yang et al 2015 Nano Energy 11 736

Download references

Acknowledgements

We thank NRB—Naval Research Board—for the financial support given for this research work (project number: NRB-290/MAT/12-13). We thank Dr Krishna Venkatesh, CEO, Centre for Emerging Technologies, Dr Chenraj Roychand, President, Jain University Trust, Dr M Krishna, Director, CMRTU and Prof B S Satyanarayana, Principal, RVCE, for their constant support in encouraging this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N KATHYAYINI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PRASANNA, B.P., AVADHANI, D.N., MURALIDHARA, H.B. et al. Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. Bull Mater Sci 39, 667–675 (2016). https://doi.org/10.1007/s12034-016-1196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1196-9

Keywords

Navigation