Skip to main content
Log in

Synthesis and optical characterization of copper nanoparticles prepared by laser ablation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The remarkable size-tunable properties of nanoparticles (NPs) make them a hot research topic with applications in a wide range of fields. Hence, copper (Cu) colloidal NPs were prepared using laser ablation (Nd:YAG, 1064 nm, 7 ns, 10 Hz, 6000 pulses) of a copper metal plate at different laser fluences (LFs) in the range of 1–2.5 J cm−2 in ethylene glycol (EG), at room temperature. Analysis of NPs was carried using different independent techniques such as ultraviolet–visible (UV–vis) spectroscopy; transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. TEM analysis showed that the NPs were spherical with a bimodal distribution and an average particle size of 5 and 16 nm influence of 1.2 J cms−2, and 9 and 22 nm at 2 J cm−2. The UV–vis spectra of colloidal NPs revealed the maximum absorbance at around 584 nm, indicating the formation of Cu NPs, which supported using FTIR spectra. Furthermore, the absorption spectra confirmed the metallic nature of Cu NPs. FTIR spectroscopy was utilized to verify information about the NPs surface state and chemical bonds constructed in the atom groups apparent on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ţălu Ş, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F and Solaymani S 2015 Ind. Eng. Chem. Res. 54 8212

    Article  Google Scholar 

  2. Ţălu Ş, Solaymani S, Bramowicz M, Naseri N, Kulesza S and Ghaderi A 2016 RSC Adv. 6 27228

    Article  Google Scholar 

  3. Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A and Ahmadirad M 2016 J. Ind. Eng. Chem. 35 158

    Article  Google Scholar 

  4. Messina E 2012 PhD Thesis (Catania: Università degli Studi di Catania)

  5. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G and Abdul Rahuman A 2012 Mater. Lett. 71 114

    Article  Google Scholar 

  6. Hamad S, Krishna G, Gatlapalli P, Tewari S P and Venugopal Rao S 2014 J. Phys. 82 331

    Google Scholar 

  7. Santillán M J, Videla F A, Fernández van Raap M B, Schinca D C and Scaffardi L B 2013 J. Appl. Phys. 113 134305–1

    Article  Google Scholar 

  8. Khalaf Ali A 2010 PhD Thesis (Baghdad: University of Technology)

  9. Khalef W K 2013 J. Eng. Technol. 32 396

    Google Scholar 

  10. Sasaki T, Shimizu Y and Koshizaki N 2006 J. Photochem. Photobiol. A Chem. 182 335

    Article  Google Scholar 

  11. Amendola V and Meneghetti M 2013 Phys. Chem. Chem. Phys. 15 3027

    Article  Google Scholar 

  12. Yan Z and Chrisey D B 2012 J. Photochem. Photobiol. C Photochem. Rev. 13 204

    Article  Google Scholar 

  13. Salminen T 2013 PhD Thesis (Tampere: Tampere University of Technology)

  14. Desarkar H S, Kumbhakar P and Mitra A K 2012 Appl. Nanosci. 2 285

    Article  Google Scholar 

  15. Samuel Golightly J 2007 PhD Thesis (Pennsylvania: Pennsylvania State University)

  16. Cristoforetti G, Pitzalis E, Spiniello R, Ishak R and Muniz-Miranda M 2011 J. Phys. Chem. C 115 5073

    Article  Google Scholar 

  17. Khilkala W M, Al-Dahash G A and Abdul Wahid S N 2014 Int. J. Curr. Eng. Tech. 4 2577

    Google Scholar 

  18. Itina T E 2011 J. Phys. Chem. C 115 5044

    Article  Google Scholar 

  19. Amendola V and Meneghetti M 2009 Phys. Chem. Chem. Phys. 11 3805

    Article  Google Scholar 

  20. Miranda M, Gellini C and Giorgetti E 2011 J. Phys. Chem. C 115 5021

    Article  Google Scholar 

  21. Jain P K, Huang X, El-Sayed I H and El-Sayed M A 2008 Acc. Chem. Res. 41 1578

    Article  Google Scholar 

  22. Xu B, Song R G, Tang P H, Wang J, Chai G Z, Zhang Y Z and Ye Z Z 2008 Key Eng. Mater. 373–374 346

    Article  Google Scholar 

  23. Sandu T 2012 J. Nanopart. Res. 14 1

    Article  Google Scholar 

  24. Haes A J, Paige Hall W, Chang L, Klein W L and Van Duyne R P 2004 Nano Lett. 4 1029

  25. Sherry L J, Chang S H, Schatz G C and Van Duyne R P 2005 Nano Lett. 5 2034

  26. Hashimoto S, Werner D and Uwada T 2012 J. Photochem. Photobiol. C Photochem. Rev. 13 28

    Article  Google Scholar 

  27. Eustis S and El-Sayed M A 2005 Chem. Soc. Rev. 35 209

    Article  Google Scholar 

  28. Dung Dang T M, Thu Le T T, Fribourg-Blanc E and Chien Dang M 2011 Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 015009–1

    Google Scholar 

  29. Balamurugana B and Maruyama T 2005 Appl. Phys. Lett. 87 143105–1

    Article  Google Scholar 

  30. Intartaglia R, Bagga K, Brandi F, Das G, Genovese A, Di Fabrizio E and Diaspro A 2011 J. Phys. Chem. C 115 5102

    Article  Google Scholar 

  31. Fei B, Xin-Zheng Z, Zhen-Hua W, Qiang W, Hao H and Jing-Jun X 2008 Chin. Phys. Lett. 25 4463

    Article  Google Scholar 

  32. Imam H, Elsayed K, Ahmed M A and Ramdan R 2012 Int. J. Opt. Photon. 2 73

    Article  Google Scholar 

  33. Yeh M S, Yang Y S, Lee Y P, Lee H F, Yeh Y H and Yeh C S 1999 J. Phys. Chem. B 103 6851

    Article  Google Scholar 

  34. Hahn A, Barcikowski S and Chichkov B N 2008 J. Laser Micro/Nanoeng. 3 73

    Article  Google Scholar 

  35. Sajti C L, Petersen S, Jakobi J, Hahn A, Chichkov B N and Barcikowski S Proceedings of the ICCE-17 Conference, Hawaii, USA, p 1

  36. Chen Y H and Yeh C S 2002 Colloids Surf. A Physicochem. Eng. Aspects 197 133

    Article  Google Scholar 

  37. Tsuji T, Iryo K, Watanabe N and Tsuji M 2002 Appl. Surf. Sci. 202 80

    Article  Google Scholar 

  38. Mahmoud A K, Fadhill Z, Ibrahim Al-nassar S, Ibrahim Husein F, Akman E and Demir A 2013 J. Mater. Sci. Eng. B 3 364

    Google Scholar 

  39. Zamiri R, Zakaria A, Abbastabar Ahangar H, Darroudi M, Zamiri G, Rizwan Z and Drummen G P C 2013 Int. J. Nanomedicine 8 233

    Google Scholar 

  40. Boutinguiza M, Comesaña R, Lusquiños F, Riveiro A and Pou J 2011 Nanoscale Res. Lett. 6 1

    Article  Google Scholar 

  41. Nichols W T, Sasaki T and Koshizaki N 2006 J. Appl. Phys. 100 114912

    Article  Google Scholar 

  42. Kabashina A V and Meunier M 2003 J. Appl. Phys. 94 7941

    Article  Google Scholar 

  43. Simakin A V and Voronov V V 2004 Appl. Phys. A 79 1127

    Article  Google Scholar 

  44. Pramila Devamani R H and Sivakami S 2014 J. Sci. Res. 1 1

    Google Scholar 

  45. Ndana M, Grace J J, Baba F H and Mohammed U M 2013 Int. J. Sci. Env. Technol. 2 1116

    Google Scholar 

  46. Karthik A D and Geetha K 2013 J. Appl. Pharmac. Sci. 3 16

  47. Betancourt-Galindo R, Reyes-Rodriguez P Y, Puente-Urbina B A, Avila-Orta C A, Rodríguez-Fernández O S, Cadenas-Pliego G, Lira-Saldivar R H and García-Cerda L A 2014 J. Nanomater. 2014 1

  48. Henrist C, Traina K, Hubert C, Toussaint G, Rulmont A and Cloots R 2003 J. Cryst. Growth 254 176

    Article  Google Scholar 

  49. Smith B 1999 Infrared spectral interpretation (New York: CRC Press, Taylor & Francis Group)

  50. Stuart B H 2004 Infrared spectroscopy: fundamentals and applications (John Wiley & Sons)

  51. Coates J 2000 In Encyclopedia of analytical chemistry R A Meyers (ed) (John Wiley & Sons) p 10815

  52. Dadgostar N 2008 PhD Thesis (Waterloo: University of Waterloo)

  53. Suresh Y, Annapurnav S, Singh A K and Bhikshamaiah G 2014 Int. J. Innov. Res. Sci. Eng. Technol. 3 11265

    Google Scholar 

  54. Mauricio Aguirre J, Gutiérrez A and Giraldo O 2011 J. Braz. Chem. Soc. 22 546

    Article  Google Scholar 

  55. Socrates G 2001 (London: University of West London)

  56. Silverstein R M, Webster F X and Kiemle D J 2005 Spectrometric identification of organic compounds (New York: State University of New York, John Wiley & Sons)

  57. Petrov T, Markova-Deneva I, Chauvet O, Nikolov R and Denev I 2012 J. Univ. Chem. Technol. Metall. 47 197

    Google Scholar 

  58. Suresh Y, Annapuma S, Bhikshamaiah G and Singh A K 2013 Proceedings of the international conference on advanced nanomaterials and emerging engineering technologies

  59. Zhu H, Lin Y and Yin Y 2004 J. Colloid Interface Sci. 277 100

    Article  Google Scholar 

  60. Rahman A, Ismail A, Jumbianti D, Magdalena S and Sudrajat H 2009 Indo. J. Chem. 9 355

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAMIRA MONIRI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MONIRI, S., GHORANNEVISS, M., HANTEHZADEH, M.R. et al. Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. Bull Mater Sci 40, 37–43 (2017). https://doi.org/10.1007/s12034-016-1348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1348-y

Keywords

Navigation