Skip to main content
Log in

Room-temperature ferromagnetic and photoluminescence properties of indium–tin-oxide nanoparticles synthesized by solid-state reaction

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, indium–tin-oxide (ITO) nanoparticles were synthesized using solid-state reaction and studied for their structural, vibrational and magnetic properties. The ITO nanoparticles were prepared under reduced pressure, which can increase the oxygen vacancies in the samples. The X-ray diffraction studies confirmed singe-phase cubic bixbyite structure of ITO with average crystallite size of 47 nm. The lattice vibrational studies (FT-IR and Raman spectroscopy) at room temperature indicated that Sn ions were occupied in In2O3 lattice and gives corresponding active vibrational modes in the respective spectra. The magnetic studies at room temperature reveal the ferromagnetic nature of ITO and the strength of magnetization is superior to those of In2O3 and SnO2. However, the magnetic studies at 100 K revealed reduced ferromagnetism, which could be attributed to reduced itinerary electrons at low temperature. Blue and blue–green emissions were found from the ITO nanoparticles, which could be due to vacancies or surface defects present in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019

    Article  Google Scholar 

  2. Jonker B T, Park Y D, Bennett B R, Cheong H D, Kioseoglou G and Petrou A 2000 Phys. Rev. B 62 8180

    Article  Google Scholar 

  3. Kaushik A, Dalela B, Kumar S, Alvi P A and Dalela S 2013 J. Alloys Compd. 552 274

    Article  Google Scholar 

  4. Saleh R, Djaja N F and Prakoso S P 2013 J. Alloys Compd. 546 48

    Article  Google Scholar 

  5. Jlaiel F, Amami M, Boudjada N, Strobel P and Salah A 2011 J. Alloys Compd. 509 7784

    Article  Google Scholar 

  6. Khatoon S, Coolahan K, Lofland S E and Ahmad T 2012 , J. Alloys Compd. 545 162

    Article  Google Scholar 

  7. Fitzgerald C B, Venkatesan M, Douvalis A P, Huber S, Coey J M D and Bakas T 2004 J. Appl. Phys. 95 7390

    Article  Google Scholar 

  8. Ahmad T and Khatoon S 2015 J. Mater. Res. 30 1611

    Article  Google Scholar 

  9. Khatoon S, Coolahan K, Lofland S E and Ahmad T 2013 , J. Am. Ceram. Soc. 96 2544

    Article  Google Scholar 

  10. Gordon R G 2000 MRS Bull. 25 52

    Article  Google Scholar 

  11. Ederth J, Hultaker A, Niklasson G A, Heszler P, Doorn A R V, Jongerius M J, Burgard D and Granqvist C G 2005 Appl. Phys. A : Mater. Sci. Process. 81 1363

    Article  Google Scholar 

  12. Buhler G, Tholmann D and Feldmann C 2007 Adv. Mater. 19 2224

    Article  Google Scholar 

  13. Prasad K R, Koga K and Miura N 2004 Chem. Mater. 16 1845

    Article  Google Scholar 

  14. Xia B, Wu Y, Ho H W, Ke C, Song W D, Huan C H A, Kuo J L, Zhu W G and Wang L 2011 Physica B 406 3166

    Article  Google Scholar 

  15. Cullity B D 1978 Elements of X-ray diffraction, 2nd edn (Reading, MA: Addison Wesley) p 10

  16. Kachouane A, Addou M, Bougrine A, Elidrissi B, Messoussi R, Regragui M and Bernede J C 2001 Mater. Chem. Phys. 70 285

    Article  Google Scholar 

  17. Zhu F, Huan C H A, Zhang K and Wee A T S 2000 Thin Solid Films 359 254

    Article  Google Scholar 

  18. Majumdar H S, Majumdar S, Tobjork D and Osterbacka R 2010 Synth. Met. 160 303

    Article  Google Scholar 

  19. Ayeshamariam A, Ramalingam S, Bououdina M and Jayachandran M 2014 Spectrochim. Acta Part A 118 1135

    Article  Google Scholar 

  20. Shek C H, Lin G M and Lai J K L 1999 Nano Struct. Mater. 11 831

    Article  Google Scholar 

  21. Kaur J, Shah J, Kotnala R K and Verma K C 2012 Ceram. Int. 38 5563

    Article  Google Scholar 

  22. Mcguire K, Pan Z W, Wang Z L, Milkie D, Menendez J and Rao A M 2002 J. Nanosci. Nanotechnol. 2 1

    Article  Google Scholar 

  23. Zhou W, Liu R, Wan Q, Zhang Q, Pan A L, Guo L and Zou B 2009 J. Phys. Chem. C 113 1719

    Article  Google Scholar 

  24. Dussan S, Singh M K, Kumar A and Katiyar S 2011 Integr. Ferroelectr. 125 155

    Article  Google Scholar 

  25. Santara B, Pal B and Giri P K 2011 J. Appl. Phys. 110 114322

    Article  Google Scholar 

  26. Zener C 1951 Phys. Rev. 81 440

    Article  Google Scholar 

  27. Ruderman M A and Kittel C 1954 Phys. Rev. 96 99

    Article  Google Scholar 

  28. Coey J M D, Douvalis A P, Fitzgerald C B and Venkatesan M 2004 Appl. Phys. Lett. 84 1332

    Article  Google Scholar 

  29. Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173

    Article  Google Scholar 

  30. Sun Z, He J, Kumbhar A and Fang J 2010 Langmuir 26 4246

    Article  Google Scholar 

  31. Choi S I, Nam K M, Park B K, Seo W S and Park J T 2008 Chem. Mater. 20 2609

    Article  Google Scholar 

  32. Kundu S and Biswas P K 2005 Chem. Phys. Lett. 414 107

    Article  Google Scholar 

  33. Khan G G, Ghosh S, Sankar A, Mandal G, Mukherjee G D, Manju U, Banu N and Dev B N 2015 Appl. Phys. Lett. 118 074303

    Google Scholar 

  34. Taniguchi T, Yamaguchi K, Shigeta A, Matsuda Y, Hayami S, Shimizu T, Matsui T, Yamazaki T, Funatstu A, Makinose Y, Matsushita N, Koinuma M and Matsumoto Y 2013 Adv. Funct. Mater. 23 3140

    Article  Google Scholar 

  35. Gao J, Chen R, Li D H, Jiang L, Ye J C, Ma X C, Chen X D, Xiong Q H, Sun H D and Wu T 2011 Nanotechnology 22 195706

    Article  Google Scholar 

  36. Hsin C L, He J H and Chen L J 2006 Appl. Phys. Lett. 88 063111

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to UGC-DAE-CSR, IGCAR, Kalpakkam 603102, Tamilnadu, India, for providing financial (Grant no. CSR-KN/CRS-72/2015-16/809) support to carry out the present work. We are highly thankful to Dr R K Kotnala, Dr J Shah and Dr G A Bashheed, National Physical Laboratory, India, for providing the vibrating sample magnetometer facilities. We also thank VIT-SIF for providing XRD, Raman and UV–vis–NIR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S KALEEMULLA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BABU, S.H., RAO, N.M., KALEEMULLA, S. et al. Room-temperature ferromagnetic and photoluminescence properties of indium–tin-oxide nanoparticles synthesized by solid-state reaction. Bull Mater Sci 40, 17–23 (2017). https://doi.org/10.1007/s12034-016-1352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1352-2

Keywords

Navigation