Skip to main content

Advertisement

Log in

Na-doped LiMnPO4 as an electrode material for enhanced lithium ion batteries

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We report the influence of sodium (Na)-incorporated lithium manganese phosphate as an active material on its performance in electrochemical study for energy storage application. Li1−x Na x MnPO4 with different mole ratios (0.00 ≤ x ≤ 0.05) of sodium is synthesized via a simple sol–gel method. The discharge capacity of Li1−x NaxMnPO4 varies with respect to mole ratios of sodium incorporated. The maximum discharge capacity of 92.45 mAh g−1 is observed in Li0.97Na0.03MnPO4, which is higher than that of pristine LiMnPO4 and other Na-incorporated LiMnPO4. The maximum cyclic stability is found to be 84.15% up to 60 cycles. These results demonstrate that Li0.97Na0.03MnPO4 plays a significant role in future energy storage application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kim J, Seo D, Kim S, Park Y and Kang K 2010 Chem. Commun. 46 1305

    Article  Google Scholar 

  2. Koleva V, Zhecheva E and Stoyanova R 2011 Dalton Trans. 40 7385

    Article  Google Scholar 

  3. Zhang W, Shan Z, Zhu K, Liu S, Liu X and Tian J 2015 Electrochim. Acta 153 385

    Article  Google Scholar 

  4. Yoshida J, Stark M, Holzbock J et al 2013, J. Power Sources 226 122

    Article  Google Scholar 

  5. Qin Z, Zhou X, Xia Y, Tang C and Liu Z 2012 J. Mater. Chem. 22 21144

    Article  Google Scholar 

  6. Aono S, Urita K, Yamada H and Moriguchi I 2012 Solid State Ion 225 556

    Article  Google Scholar 

  7. Dong Y, Wang L, Zhang S et al 2012, J. Power Sources 215 116

    Article  Google Scholar 

  8. Zhao M, Fu Y, Xu N, Li G and Gao X 2014 J. Mater. Chem. A 2 15070

    Article  Google Scholar 

  9. Doi T, Yatomi S, Kida T, Okada S and Yamaki J 2009 Cryst. Growth Des. 9 10

    Article  Google Scholar 

  10. Zhu K, Zhang W, Du J et al 2015, J. Power Sources 300 139

    Article  Google Scholar 

  11. Su K, Liu F and Chen J 2013 J. Power Sources 232 234

    Article  Google Scholar 

  12. Moon S, Muralidharan P and Kim D K 2012 Ceram. Int. 38 S471

    Article  Google Scholar 

  13. Jo M, Yoo H, Jung Y S and Cho J 2012 J. Power Sources 216 162

    Article  Google Scholar 

  14. Gan Y, Chen C, Liu J, Bian P, Hao H and Yu A 2015 J. Alloys Compd. 620 350

    Article  Google Scholar 

  15. Ottmann A, Jähne C, Meyer H -P and Klingeler R 2015 Mater. Res. Bull. 63 6

    Article  Google Scholar 

  16. Gu Y, Wang H, Zhu Y, Wang L, Qian Y and Chu Y 2015 Solid State Ion 274 106

    Article  Google Scholar 

  17. Kwon N H and Fromm K M 2012 Electrochim. Acta 69 38

    Article  Google Scholar 

  18. Cui Y -T, Xu N, Kou L -Q, Wu M -T and Chen L 2014 J. Power Sources 249 42

    Article  Google Scholar 

  19. Nam T, Doan L, Bakenov Z and Taniguchi I 2010 Adv. Powder Technol. 21 187

    Article  Google Scholar 

  20. Kou L, Chen F, Tao F, Dong Y and Chen L 2015 Electrochim. Acta 173 721

    Article  Google Scholar 

  21. Lee J, Park M, Anass B, Park J, Paik M and Doo S 2010 Electrochim. Acta 55 4162

    Article  Google Scholar 

  22. Hu C, Yi H, Fang H et al 2010, Electrochem. Commun. 12 1784

    Article  Google Scholar 

  23. Wang J, Lin W, Wu B and Zhao J 2014 Electrochim. Acta 145 245

    Article  Google Scholar 

  24. He W., Yuan D, Qian J, Ai X, Yang H and Cao Y 2013 , J. Mater. Chem. A 1 11397

    Article  Google Scholar 

  25. Chen Z, Xie T, Li L and Xu M 2014 Ionics 20 629

    Article  Google Scholar 

  26. Hee W, Yuan D, Qian J, Ai X, Yang A and Cao Y 2013 , J. Mater. Chem. A 1 11397

    Article  Google Scholar 

  27. Oh R -G, Hong J -E, Jung H -W and Ryu K -S 2015, J. Power Sources 295 1

    Article  Google Scholar 

  28. Qiu B, Wang J, Xia Y, Liu Y, Qin L, Yao X and Liu Z 2013 J. Power Sources 240 530

    Article  Google Scholar 

  29. Park S H, Shin S S and Sun Y K 2006 Mater. Chem. Phys. 95 218

    Article  Google Scholar 

  30. Sun F and Xu Y 2014 J. Alloys Compd. 584 538

    Article  Google Scholar 

  31. Gong C, Lv W, Qu L et al 2014, J. Power Sources 247 151

    Article  Google Scholar 

  32. Hu G, Zhang M, Liang L, Peng Z, Du K and Cao Y 2016 Electrochim. Acta 190 264

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank financial support from the University of Malaya via PPP grant PG 099 – 2014B and Fundamental Research Grant Scheme (FP012-2015A) from the Ministry of Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NAVANEETHAN DURAISAMY.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAJAMMAL, K., SIVAKUMAR, D., DURAISAMY, N. et al. Na-doped LiMnPO4 as an electrode material for enhanced lithium ion batteries. Bull Mater Sci 40, 171–175 (2017). https://doi.org/10.1007/s12034-017-1365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1365-5

Keywords

Navigation