Skip to main content
Log in

Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Facile reduction of p-nitrophenol to p-aminophenol by sodium borohydride catalysed by cobalt nanoparticles (CoNPs) has been discussed. A simple approach has been made to synthesize highly active and ordered structures of CoNPs. The air-stable nanoparticles were prepared from cobalt sulphate using tetrabutyl ammonium bromide as surfactant and sodium borohydride as reductant. The cobalt nanocolloids in aqueous medium were found to be efficient reusable catalysts for the p-nitrophenol reduction. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to reduce p-nitrophenol but lose their catalytic efficiency after recovery. Based on chemical and kinetic studies, an attempt has been made to elucidate the mechanism of p-nitrophenol reduction using these nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Scheme 1

Similar content being viewed by others

References

  1. Daniels M and Astruc D 2004 Chem. Rev. 104 293

    Article  Google Scholar 

  2. Cushing B L, Kolesnichenko V L and O’Connor C J 2004 Chem. Rev. 104 3893

    Article  Google Scholar 

  3. Guo L, Liang F, Wen X G, Yang S H, He L, Zheng W Z, Chen C P and Zhong Q P 2007 Adv. Funct. Mater. 17 425

    Article  Google Scholar 

  4. Liu S H, Gao H T, Ye E Y, Low M, Lim S, Zhang S Y, Lieu X H, Tripathy S, Tremel W and Han M Y 2010 Chem. Commun. 46 4749

    Article  Google Scholar 

  5. Wang X, Yuan F L, Hu P, Hu L J and Bai L Y 2008 J. Phys. Chem. C 112 8773

    Article  Google Scholar 

  6. Cao F, Deng R P, Tang J K, Song S Y, Lei Y Q and Zhang H J 2011 CrystEngComm 13 223

    Article  Google Scholar 

  7. Dakhlaoui A, Smiri L S, Babadjiam G, Schoenstein F, Molinié P and Jouini N 2008 J. Phys. Chem. C 112 14348

    Article  Google Scholar 

  8. Xia L X, Zhao H, Liu G, Hu X, Liu Y, Li J, Yang D and Wang X 2011 Colloids Surf. A: Physicochem. Eng. Aspects 384 358

    Article  Google Scholar 

  9. Y B C., Zhang X, Fan J M, Hu P, Bai L Y, Zhang H B, Yuan F L and Chen Y F 2011 Cryst. Growth Des. 11 472

    Article  Google Scholar 

  10. Zhang P, An Q, Guo J and Wang C C 2013 J. Colloid Interface Sci. 389 10

    Article  Google Scholar 

  11. Kkroschwitz J I (ed) 1995 Kirk-Othmer encyclopedia of chemical technology vol 2, 4th edn (USA: Wiley Interscience) p 580

  12. Mori T, Watanuki T and Kashiwaguru T 2007 Environ. Toxicol. 22 58

    Article  Google Scholar 

  13. Li C M, Taneda S, Suzuki A K, Furuta C, Watanabe G and Taya K 2006 Appl. Pharmacol. 217 1

    Article  Google Scholar 

  14. Feng Z V, Lyon J L, Croley J S, Crooks R M, Bout D A V and Stevenson K J 2009 J. Chem. Educ. 86 368

    Article  Google Scholar 

  15. Rode C V, Vaidya M J, Jaganathan R and Chaudhari R V 2001 Chem. Eng. Sci. 56 1299

    Article  Google Scholar 

  16. Polat K, Aksu M L and Pekel A T 2002 J. Appl. Electrochem. 32 217

    Article  Google Scholar 

  17. Bean F and Thomas S 1945 US Patent 2 376 112

  18. Abbar A H, Sulaymon A H and Jalhoom M G 2007 Electrochim. Acta 53 1671

    Article  Google Scholar 

  19. Du Y, Chen H, Chen R and Xu N 2004 Appl. Catal. A 277 259

    Article  Google Scholar 

  20. Vaidya M J, Kulkarni S M and Chaudhari R V 2003 Org. Process Res. Dev. 7 202

    Article  Google Scholar 

  21. Farhadi S and Siadatnasab F 2011 J. Mol. Catal. A: Chem. 339 108

    Article  Google Scholar 

  22. Holtzclaw C and Bryan W 1965 US Patent 3 177 256

    Google Scholar 

  23. Liu P and Zhao M 2009 Appl. Surf. Sci. 255 3989

    Article  Google Scholar 

  24. Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y and Hayashi H 2002 Int. J. Hydrogen Energy 27 1029

    Article  Google Scholar 

  25. Chang Y C and Chen D H 2009 J. Hazard. Mater. 165 664

    Article  Google Scholar 

  26. Wu Y, Zhang T, Zheng Z, Ding X and Peng Y 2010 Mater. Res. Bull. 45 513

    Article  Google Scholar 

  27. Kuroda K, Ishida T and Haruta M 2009 J. Mol. Catal. A: Chem. 298 7

    Article  Google Scholar 

  28. Arora S, Kapoor P and Singla M L 2010 React. Kinet. Mech. Catal. 99 157

    Google Scholar 

  29. Yu T, Zeng J, Lim B and Xia Y 2010 Adv. Mater. 22 5188

    Article  Google Scholar 

  30. Rong M Z, Zhang M Q, Wang H B and Zeng H M 2002 Appl. Surf. Sci. 200 76

    Article  Google Scholar 

  31. Chen X, Zheng Z, Ke X, Jaatinen E, Xie T, Wang D, Guo C, Zhao J and Zhu H 2010 Green Chem. 12 414

    Article  Google Scholar 

  32. Deshmukh S P, Dhokale R K, Yadav H M, Achary S N and Delekar S D 2013 Appl. Surf. Sci. 273 676

    Article  Google Scholar 

  33. Yang G C and Lee H L 2005 Water Res. 39 884

    Article  Google Scholar 

  34. Shih Y H, Tso C P and Tung L Y 2010 J. Environ. Eng. Manag. 20 137

    Google Scholar 

  35. Soomro R A, Sherazi S T H, Sirajuddin N, Raza M, Shah N H K, Hallam K R and Shah A 2014 Adv. Mater. Lett. 5 191

    Article  Google Scholar 

  36. Mondal A, Adhikary B and Mukherjee D K 2015 Colloids Surf. A: Physicochem. Eng. Aspects 482 248

    Article  Google Scholar 

  37. Lu Y, Mei Y, Walker R, Ballauff M and Drechsler M 2006 Polymer 47 4985

    Article  Google Scholar 

  38. Mondal A, Das A, Adhikary B and Mukherjee D K 2014 J. Nano Part. Res. 16 1

    Google Scholar 

  39. Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademan K, Jaquet B and Zaccone A 2014 J. Phys. Chem. C 118 18618

    Article  Google Scholar 

  40. Wunder S, Polzer F, Lu Y, Mei Y and Ballauff M 2010 J. Phys. Chem. C 114 8814

    Article  Google Scholar 

  41. Wunder S, Lu Y, Albrecht M and Ballauff M 2011 ACS Catal. 1 908

    Article  Google Scholar 

  42. Antonels N C and Meijboom R 2013 Langmuir 29 13433

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to the Department of Chemistry, R.S. College, and Indian Institute of Engineering Science and Technology for all instrumental support and to the University Grants Commission-New Delhi for providing financial support and scholarship to A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEB KUMAR MUKHERJEE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MONDAL, A., MONDAL, A., ADHIKARY, B. et al. Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions. Bull Mater Sci 40, 321–328 (2017). https://doi.org/10.1007/s12034-017-1367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1367-3

Keywords

Navigation