Skip to main content

Advertisement

Log in

Gel-combustion-synthesized ZnO nanoparticles for visible light-assisted photocatalytic hydrogen generation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs) synthesized by the gel combustion technique using a bio-fuel, cassava starch (root tubers of Manihot esculenta), have been characterized by various techniques. The X-ray diffraction pattern reveals hexagonal wurtzite structure. The particle size averaged around 45 nm with an excellent band gap of 2.5 eV. The scanning electron and transmission electron microscopic images confirm the ZnO NPs to be agglomerated with loop- and chain-like morphology. The ZnO NPs prepared by this method is a promising candidate for photocatalytic hydrogen generation (41 μmol h−1 g−1) under UV light illumination and (140 μmol h−1 g−1) under visible light illumination.

ZnO nanaoparticles for Hydrogen generation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Bunn C W 1935 Proc. Phys. Soc. 47 835

    Article  Google Scholar 

  2. Coleman V A and Jagadish C 2006 Basic properties and applications of ZnO in: Zinc oxide bulk, thin films and nanostructures (Amsterdam: Elsevier) p 1

  3. Thomas D G 1960 J. Phys. Chem. Solids 15 86

    Article  Google Scholar 

  4. Ramasami A K, Naika H R, Nagabhushana H, Ramakrishnappa T, Balakrishna G R and Nagaraju G 2015 Mater. Charact. 99 266

    Article  Google Scholar 

  5. Nickel N H and Terukov E 2005 (eds) Zinc oxide—a material for micro- and optoelectronic applications (Netherlands: Springer)

  6. Huang J, Yin Z and Zheng Q 2011 Energy Environ. Sci. 4 3861

    Article  Google Scholar 

  7. Manjunath K, Lingaraju K, Kumar D, Nagabhushan H, Samrat D, Reddy V, Dupont J, Ramakrishnappa T and Nagaraju G 2015 Int. J. Nanosci. 14 1550005

    Article  Google Scholar 

  8. Ramimoghadam D, Hussein M Z B and Yap Y H T 2013 Chem. Cent. 7 136

    Article  Google Scholar 

  9. Meulenkamp E A 1998 J. Phys. Chem. B 102 5566

    Article  Google Scholar 

  10. Ha T T, Canh T D and Tuyen N V 2013 ISRN Nanotechnol. 2013 Article ID 497873

  11. Singh R P, Shukla V K, Yadav R S, Sharma P K, Singh P K and Pandey A C 2011 Adv. Mater. Lett. 2 313

    Article  Google Scholar 

  12. Ramimoghadam D, Hussein M Z B and Yap Y H T 2013 Chemistry Cent. 7 71

    Article  Google Scholar 

  13. Zhang G, Shen X and Yang Y 2011 J. Phys. Chem. C 115 7145

    Article  Google Scholar 

  14. Taubert A and Wegner G 2012 J. Mater. Chem. 12 805

    Article  Google Scholar 

  15. Riahi-Noori N, Sarraf-Mamoory R, Alizadeh P and Mehdikhani A 2008 J. Ceram. Process. Res. 9 246

    Google Scholar 

  16. Gegova R, Dimitriev Y and Bachvarova-Nedelcheva A 2013 J. Chem. Technol. Metall. 48 147

    Google Scholar 

  17. Patil K C et al 2013 Combustion synthesis, novel synthesis and characterization of nanostructured materials (Heidelberg: Springer)

    Google Scholar 

  18. Welsch R, Arango J, Bar C, Salazar B, Babili S A, Beltran J, Chavarriaga P, Ceballos H, Tohme J and Bayer P 2013 Plant Cell 22 3348

    Article  Google Scholar 

  19. Cock J H 1995 Cassava: new potential for a neglected crop (London: Weatfield)

    Google Scholar 

  20. Best R and Henry G 1992 in: W M Roca and T M Thro (eds) Report of the first meeting of the International Network for Cassava Genetic Resources (Columbia, California: Centro Internacional de Agricultura Tropical) p 3

  21. Mann C 1997 Science 277 1038

    Article  Google Scholar 

  22. Mishra S and Rai T 2006 Food Hydrocolloid. 20 557

    Article  Google Scholar 

  23. Liao C-H, Huang C-W and Wu J C S 2012 Catalysts 2 490

    Article  Google Scholar 

  24. Steinfeld A 2002 Int. J. Hydrogen Energy 27 611

    Article  Google Scholar 

  25. Licht S 2005 Chem. Commun. 37 4635

    Article  Google Scholar 

  26. Fujishima A and Honda K 1972 Nature 238 37

    Article  Google Scholar 

  27. Nagaraju G, Ravishankar T N, Manjunath K, Sarkar S, Nagabhushana H, Gonclaves R and Dupont J 2013 Mater. Lett. 109 27

    Article  Google Scholar 

  28. Laveena P D’Souza, Sindu Shree and Geetha R Balakrishna 2013, Ind. Eng. Chem. Res. 52 16162

    Article  Google Scholar 

  29. Ravishankar T N, Ramakrishnappa T, Nagabhushana H, Souza V S, Dupont J and Nagaraju G 2015 New J. Chem. 39 1421

    Article  Google Scholar 

  30. Hussein A M, Mohaney L, Peng R, Kibombo H, Wu C M, Koodali R T and Shende R 2013 J. Renew. Sustain. Energy 5 1

    Article  Google Scholar 

  31. Janet C, Navaladian S, Viswanathan B, Varadarajan T K and Vishwanath R P 2010 J. Phys. Chem. C 114 2622

    Article  Google Scholar 

  32. Wang X and Yao X 2014 Carbon 77 667

    Article  Google Scholar 

  33. Peng T-Y, Liv H-J, Zeng P and Zang X-H 2011, Chin. J. Chem. Phys. 24 464

    Article  Google Scholar 

  34. Jagadeesh A, Rattan T M, Muralikrishna M and Venkataramaiah K 2014 Mater. Lett. 121 133

    Article  Google Scholar 

  35. Tulyathan V, Chimchom K, Ratanathammapan K, Pewlong C and Navankasattusas S 2006 J. Sci. Res. Chula Univ. 1 14

    Google Scholar 

  36. Langford J I, Cernik R J and Louer D 1991 J. Appl. Crystallogr. 24 913

    Article  Google Scholar 

  37. Kumar P M, Badrinarayanan S and Satry M 2000 Thin Solid Films 358 122

    Article  Google Scholar 

  38. He G, Fang Q, Zhu L, Liu M and Zhang L 2004 Chem. Phys. Lett. 395 259

    Article  Google Scholar 

  39. Phattalung S N, Smith M F, Kim K, Du M-H, Wei S-H, Zhang S B and Limpijumnong S 2006 Phys Rev. B: Condens. Matter 73 1252051

    Google Scholar 

  40. Etacheri V, Seery M K, Hinder S J and Pillai S C 2011 Adv. Funct. Mater. 21 3744

    Article  Google Scholar 

  41. Mote V D, Huse V R and Dole B N 2012 World J. Condens. Matter Phys. 2 208

    Article  Google Scholar 

  42. Sivasubramanian D, Ponnusamy R and Gandhiraj V 2015 Mater. Chem. Phys. 159 93

    Article  Google Scholar 

  43. Zak A K, Abrishami M E, Majid W H A, Yousefi R and Hosseini S M 2011 Ceram. Int. 37 393

    Article  Google Scholar 

  44. Zak A K, Razali R, Majid W H A and Darroudi M 2011 Int. J. Nanomed. 6 1399

    Google Scholar 

  45. Zhao Y, Eley C, Hu J, Ford T S, Ye L, He H and Tsang S C E 2012 Angew. Chem. 124 1

    Article  Google Scholar 

  46. Pal B, Dhara S, Giri P K and Sarkar D 2014 J. Alloys Compd. 615 378

    Article  Google Scholar 

  47. Shwetharani R, Jyothi M S, Laveena P D and Balakrishna R G 2014 Photochem. Photobiol. 90 1099

    Google Scholar 

  48. Swetha S and Balakrishna G R 2011 Chin. J. Catal. 32 789

    Article  Google Scholar 

  49. Minchitha K U and Balakrishna G R 2012 Mater. Chem. Phys. 136 720

    Article  Google Scholar 

  50. Baruah S, Rafique R F and Dutta J 2008 Nano: Brief Rep. Rev. 3 399

    Article  Google Scholar 

  51. Machlin E S 2006 Materials science in microelectronics: the effect of structure on properties in thin films (Oxford: Elsevier)

  52. Wunderlich W, Miao L, Tanemura M, Tanemura S, Jin P, Kaneko K, Terai A, Nabatova-Gablin N and Belkada R 2009 Int. J. Nanosci. 3 439

    Article  Google Scholar 

  53. Klubnuan S, Suwanboon S and Amornpitoksuk P 2016 Opt. Mater. 53 134

    Article  Google Scholar 

  54. Urbach F 1953 Phys. Rev. 92 134

    Article  Google Scholar 

  55. Oleary S K, Zukotynski S and Perz J M 1997 J. Non-Cryst. Solids 210 249

    Article  Google Scholar 

  56. Mahmud W E and Harbi T A 2011 J. Crystal Growth 327 52

    Article  Google Scholar 

  57. Wang S, Xia G, Shao J and Fan Z 2006 J. Alloys Compd. 424 304

    Article  Google Scholar 

  58. Lee C-T 2010, Materials 3 2218

    Article  Google Scholar 

  59. Djurisic A B, Leung Y H, Tam K H, Hsu Y F, Ding L, Ge W K, Zhong Y C, Wong K S, Chan W K, Tam T L, Cheah K W, Kwok W M and Philips D L 2007 Nanotechnology 18 095702

    Article  Google Scholar 

  60. Cho S, Ma J, Kim Y, Sun Y, Wong G K L and Ketterson J B 1999 Appl. Phys. Lett. 75 2761

    Article  Google Scholar 

  61. Bagnall D M, Chen Y F, Shen M Y, Zhu Z, Goto T and Yao T 1998 J. Crystal Growth 184–185 605

    Article  Google Scholar 

  62. Xiao H, Sun M, Li C, Yang D, Han B and He S 2008 Nucl. Instrum. Methods Phys. Res. B 266 3275

    Article  Google Scholar 

  63. Patwari G, Bodo B J, Singha R and Kalita P K 2013 Res. J. Chem. Sci. 3 45

    Google Scholar 

  64. Kohan A F, Ceder G and Morgan D 2000 Phys. Rev. B 6 15019

    Article  Google Scholar 

  65. Jeong S H, Kim B-S and Lee B-T 2003, Appl. Phys. Lett. 82 2625

    Article  Google Scholar 

  66. Lv J, Li C and BelBruno J J 2013 CrystEngComm 15 5620

    Article  Google Scholar 

  67. Anpo M, Aikawa N and Kubokawa Y 1985 J. Phys. Chem. 89 5017

    Article  Google Scholar 

  68. Kong Y C, Yu D P, Zhang B, Fang W and Feng S Q 2001 Appl. Phys. Lett. 78 407

    Article  Google Scholar 

  69. Etacheri V, Roshan R and Kumar V 2012 ACS Appl. Mater. Interfaces 4 2717

    Article  Google Scholar 

  70. Chen X, Shen S, Guo L and Mao S S 2010 Chem. Rev. 110 6503

    Article  Google Scholar 

  71. Ravishankar T N, Manjunatha K, Ramakrishnappa T, Nagaraju G, Dhanith Kumar S, Sarakar S, Anandakumar B S, Chandrappa G T, Reddy V. and Dupont J 2014 Mater. Sci. Semicond. Process. 26 7

    Article  Google Scholar 

  72. Balazs N, Sranko D F, Dombi A, Sipos P and Mogyorosi K 2010 Appl. Catal. B: Environ. 96 569

    Article  Google Scholar 

  73. Jing D, Zhang Y and Guo L 2005 Chem. Phys. Lett. 415 74

    Article  Google Scholar 

  74. Stroyuk A L, Kryukov A I, Kuchmii S Y and Pokhodenko V D 2009 Theor. Exp. Chem. 45 209

    Article  Google Scholar 

  75. Ravelli D, Dondli D, Fagnoni M and Albini A 2009 Chem. Soc. Rev. 38 1999

    Article  Google Scholar 

Download references

Acknowledgement

T N Ravishankar acknowledges CNPq–TWAS for the fellowship. The authors acknowledge Dr K Manjunath, Jawaharlal Nehru Centre for Advanced Scientific Research, for XPS and Raman spectra and Ms K R Chethana, Jain University, and Ms B Hemavathi, Jain University, for their help in carrying out quantum yield experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R GEETHA BALAKRISHNA.

Additional information

Electronic Supplementary Material

Supplementary Material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 7.46 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAMASAMI, A.K., RAVISHANKAR, T.N., NAGARAJU, G. et al. Gel-combustion-synthesized ZnO nanoparticles for visible light-assisted photocatalytic hydrogen generation. Bull Mater Sci 40, 345–354 (2017). https://doi.org/10.1007/s12034-017-1372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1372-6

Keywords

Navigation