Skip to main content
Log in

Electrical and optical properties of ZnO–WO3 nanocomposite and its application as a solid-state humidity sensor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study reports the humidity sensing characteristics of ZnO–WO3 nanocomposite. Pellet samples of 0–5 weight% ZnO in WO3 were sintered from 300 to 600C. When exposed to humidity, the resistance of the sensing samples was found to decrease with increase in relative humidity (RH). Five percent ZnO-doped WO3 showed maximum sensitivity of 20.95 M Ω/%RH in 15–95% RH range. Sensor parameters like reproducibility, aging, hysteresis, response and recovery times were also studied. Sensing mechanism is discussed in terms of sintering temperature, composition and crystallite size of the sensing element. It was observed that sensing mechanism is strongly based on annealing temperature and percentage of doping. The sensing samples have also been investigated by X-ray diffraction, scanning electron microscope (SEM) and Raman spectroscopy. The crystalline size of the sample was identified by powder X-Ray Diffraction data. The SEM analysis was used to study the surface morphology. The structure, phase and the degree of crystallinity of the materials were examined by Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Pelino M. and Cantalini C. 1994 Active and Passive Elec., Comp. 16 69

    Google Scholar 

  2. Wang C, Yin L, Zhang L, Xiang D and Gao R 2010 Sensors 10 2088

    Article  Google Scholar 

  3. Akiyama M, Tamaki J, Miura N and Yamazou N 1991 Chem. Lett. 9 1611

    Article  Google Scholar 

  4. Inoue T, Ohtsuka K, Yoshida Y, Matsuura Y and Kajiyama Y 1995 Sens. Actuators B 25 388

    Article  Google Scholar 

  5. Cantalini C, Sun H T, Faccio M, Pelino M, Santucci S, Lozzi L and Passacantando M 1996 Sens. Actuators B 31 81

    Article  Google Scholar 

  6. Sberveglieri G, Depero L and Groppelli S 1995 Sens. Actuators B 26 89

    Article  Google Scholar 

  7. Cantalini C, Pelino M, Sun H T, Faccio M, Santucci S, Lozzi L and Passacantando M 1996 Sens. Actuators B 35 112

    Article  Google Scholar 

  8. Lee D S, Lim J W, Lee S M, Huh J S and Lee D D 2000 Sens. Actuators B 64 31

    Article  Google Scholar 

  9. Chung Y K, Kim M H, Um W S, Lee H S, Song J K, Choi S C, Yi K M, Lee M J and Chung K W 1999 Sens. Actuators B 60 49

    Article  Google Scholar 

  10. Turyan I, Krasovec U O, Orel B, Saraidorov T, Reisfeld R and Mandler D 2000 Adv. Mater. 12 330

    Article  Google Scholar 

  11. Ingham B, Hendy S C, Chong S V and Tallon J L 2005 Phys. Rev. B 72 075109

    Article  Google Scholar 

  12. Kofstad P 1972 Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides (New York: Wiley) p 208

    Google Scholar 

  13. Berak J M and Sienko M J 1970 J. Solid State Chem. 2 109

    Article  Google Scholar 

  14. Yang R, Terabe K, Liu G Q, Tsuruoka T, Hasegawa T, Gimzewski J K and Aono M 2012 ACS Nano 6 9515

    Article  Google Scholar 

  15. Chang T, Jo S H and Lu W 2011 ACS Nano 5 7669

    Article  Google Scholar 

  16. Yang R, Terabe K, Yao Y P, Tsuruoka T, Hasegawa T, Gimzewski J K and Aono M 2013 Nanotechnology 24 384003

    Article  Google Scholar 

  17. Zhao M, Huang J X and Ong C W 2012 Nanotechnology 23 315503

    Article  Google Scholar 

  18. Dai C L, Liu M C, Chen F S, Wu C C and Chang M W 2007 Sens. Actuators B 123 896

    Article  Google Scholar 

  19. Jimenez I, Arbiol J, Dezanneau G, Cornet A and Moronte J R 2003 Sens. Actuators B Chem. 93 475

    Article  Google Scholar 

  20. Kishimoto S, Yamamoto T and Nakagawa Y 2006 Super Lattices Microstruct. 39 306

    Article  Google Scholar 

  21. Yogeeswaran G, Chenthamarakshan C R, Tacconi N R and Rajeshwar K 2006 Mater. Res. Soc. 21 3234

    Article  Google Scholar 

  22. Seghier D and Gislason H P 2008 J. Mater. Sci. Mater. Electron. 19 687

    Article  Google Scholar 

  23. Patil D., Seo Y. -K., Hwang Y. K., Chang J. -S. and Patil P. 2008, Sens. Actuators B 132 116

    Article  Google Scholar 

  24. Yadav B C, Srivastava R. and Dwivedi C D 2008 Philosophical Magazine 88 113

    Google Scholar 

  25. Sundaram R and Nagaraja K S 2004 Mater. Res. Bull. 39 581

    Article  Google Scholar 

  26. Guermat N., Bellel A., Sahli S. and Raynaud P. 2014, J. Chem. Sci. Technol. 3 13

    Google Scholar 

  27. Md Sin N D, Fuad Kamel M, Alip R. I., Mohamad Z. and Rusop M. 2011, Adv. Mater. Sci. Eng. 2011 5

    Article  Google Scholar 

  28. Srivastava R. and Yadav B C 2012 Adv. Mat. Lett. 3 197

    Article  Google Scholar 

  29. Pandey N K, Tiwari K and Akash R O Y 2012 Bull. Mater. Sci. 35 347

    Article  Google Scholar 

  30. Li H., Liu B., Cai D., Wang Y., Liu Y., Mei L., Wang L., Wang D., Li Q. and Wang T. 2014, J. Mater. Chem. A 2 6854

    Article  Google Scholar 

  31. Pandey N K and Tiwari Karunesh 2010, Sensors Trans. 122 9

    Google Scholar 

  32. Pandey N K, Tiwari K. and Roy A. 2011, IEEE Sens. J. 11 2911

    Article  Google Scholar 

  33. Pandey N K, Tiwari K. and Roy A. 2011, IEEE Sens. J. 11 2142

    Article  Google Scholar 

  34. Pandey N K, Tripathi A, Tiwari K, Roy A, Rai A, Awasthi P, Mishra A and Kumar A 2008 Sensors Trans. 96 42

    Google Scholar 

  35. Fleming W J 1981 Society of automotive engineers transactions 90 1656

    Google Scholar 

  36. Seiyama T, Yamazoe N and Arai H 1983 Sens. Actuators 4 85

    Article  Google Scholar 

  37. Yadav B C, Pandey N K, Srivastava Amit K and Sharma Preeti J 2007 Meas. Sci. Technol. 260 18

    Google Scholar 

  38. Frioat J J, Jelli A, Poncele G and André J 1965 J. Phys. Chem. 69 2185

    Article  Google Scholar 

  39. Anderson J H and Parks G A 1968 J. Phys. Chem. 72 3662

    Article  Google Scholar 

  40. Varghese O K and Grimes C A 2003 J. Nanosci. Nanotechnol. 3 277

    Article  Google Scholar 

  41. Qu W and Ray Green M 2000 Austin, Meas., Sci. Technol. 11 1111

    Google Scholar 

  42. Skuratovsky I, Glot A, Di Bartolomeo E, Traversa E and Polini R 2004 J. Eur. Ceram. Soc. 24 2597

    Article  Google Scholar 

  43. Thermoset polymer-based capacitive sensors, application sheet (Online). Available: www.honeywell.com

  44. HIH-3605 Humidity sensor data sheet (Online). Available: www.honeywell.com

  45. Ohbuchi Y, Kawahara T, Okamoto Y and Morimoto J 2001 J. Appl. Phys. 40 213

    Article  Google Scholar 

  46. Saha D, Giri R, Mistry K K and Sengupta K 2004 Sens. Actuators B Chem. 107 323

    Article  Google Scholar 

  47. Saha D, Giri R, Mistry K K and Sengupta K, Sens. Actuators B Chem. 107 323

  48. Qu W and Meyer J -U 1997, Sens. Actuators B 40 175

    Article  Google Scholar 

  49. Sundaram R, Raj E S and Nagaraja K S 2004 Sens. Actuators B 99 350

    Article  Google Scholar 

  50. Rout C S, Hegde M and Rao C N R 2008 Sens. Actuators B 128 488

    Article  Google Scholar 

  51. Na D. -m., Satyanarayana L., Choi G. -P., Shin Y. -J. and Park J. S. 2005, Sensors 5 419

    Article  Google Scholar 

  52. Kim H. -K., Sathaye S. D., Hwang Y. K., Jhung S. H., Hwang J. -S., Kwon S. H., Park S. -E. and Chang J. -S. 2005, Bull. Korean Chem. Soc. 1881 26

    Article  Google Scholar 

  53. Pandey N K, Tiwari K, Roy A, Mishra A. and Govindan A. 2012, Int. J. Appl. Ceram. Technol. 10 150

    Article  Google Scholar 

  54. Lethy K J, Beena D, Kumar R V, Pillai V P M, Ganesan V, Sathe V and Phase D M 2008 Appl. Phys. A Mater. Sci. Process 91 637

    Article  Google Scholar 

  55. Tagtstrom P and Jansson U 1999 Thin Solid Films 352 107

    Article  Google Scholar 

  56. Daniel F, Desbat B, Lassegues J C, Gerand B and Figlarz M 1987 J. Solid State Chem. 67 235

    Article  Google Scholar 

  57. Shigesato Y, Hayashi Y, Masui A and Haranou T 1991 Jpn. J. Appl. Phys. 30 814

    Article  Google Scholar 

  58. Dixit L, Kapoor S K, Singh I D and Gupta P L 1977 Indian J. Phys. B51 116

    Google Scholar 

  59. Daniel M F, Desbat B, Lassegues J C and Garie R 1988 J. Solid State Chem. 73 127

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the University Grants Commission, India, for providing the financial support for carrying out the research work through Major Research Project Grant [(file no. 42-788-2013 (SR)]. Thanks are also due for the Geological Survey of India, Lucknow, for providing XRD facility and Birbal Sahni Institute of Paleobotany, Lucknow, for providing SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandna Shakya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakya, V., Pandey, N.K., Misra, S.K. et al. Electrical and optical properties of ZnO–WO3 nanocomposite and its application as a solid-state humidity sensor. Bull Mater Sci 40, 253–262 (2017). https://doi.org/10.1007/s12034-017-1373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1373-5

Keywords

Navigation