Skip to main content
Log in

Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

NiFe2O4 nano-crystallites with an average diameter of 8.9 nm are synthesized via hydrothermal method. The single-phase spinel structure is confirmed from X-ray diffractograms. Morphology is analysed by transmission and field emission scanning electron microscopes. High specific surface area of 55.7 m2 g−1 is obtained for nano-particles. The MH loop and MT curve behaviours are investigated by vibrating sample magnetometry. The optical band gap energy is estimated from the UV–visible spectrum. In addition, the frequency dependence of dielectric properties is investigated. Cole–Cole plots are drawn to study electrical conduction mechanism and the kind of relaxation—Debye or non-Debye type. Low a.c. conductivity and low magnetic losses are noticed at 5 MHz frequency, which are suitable for microwave device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Mahmoud M H, Elshahawy A M, Makhlouf S A and Hamdeh H H 2014 J. Magn. Magn. Mater. 369 55

    Article  Google Scholar 

  2. Rafique M Y, Ellahi M, Iqbal M Z, Javed Q and Pan L 2016 Mater. Lett. 162 269

    Article  Google Scholar 

  3. Gabal M A, Kosa S and Al Mutairi T S 2014 J. Mol. Struct. 1063 269

    Article  Google Scholar 

  4. Ranjith Kumar E, Jayaprakash R and Kumar S J. Magn. Magn. Mater. 351 70

  5. Atif M, Nadeem M and Siddique M 2015 Appl. Phys. A 120 571

    Article  Google Scholar 

  6. Luadthong C, Itthibenchapong V, Viriya-empikul N, Faungnawakij K, Pavasant P and Tanthapanichakoon W 2013 Mater. Chem. Phys. 143 203

    Article  Google Scholar 

  7. Yehia M, Labib Sh and Ismail S M 2014 Physica B 446 49

  8. Khairy M 2014 Synth. Met. 189 34

    Article  Google Scholar 

  9. Marinca T F, Chicinas I, Isnard O, Pop V and Popa F 2011 J. Alloys Compd. 509 7931

    Article  Google Scholar 

  10. Zheng H, Ni Y, Xiang N, Ma X andWan F 2015 Mater. Chem. Phys. 158 82

    Article  Google Scholar 

  11. Gabal M A, El-Shishtawy R M and Al Angari Y M 2012 J. Magn. Magn. Mater. 324 2258

    Article  Google Scholar 

  12. Gabal M A and Al Angari Y M 2009 Mater. Chem. Phys. 118 153

    Article  Google Scholar 

  13. Moradmard H, Shayeshtech S F, Tohidi P, Abbas Z and Khalegi M 2015 J. Alloys Compd. 650 116

    Article  Google Scholar 

  14. Zaki H M, Al-Heniti S H and Elmosalami T A 2015 J. Alloys Compd. 633 104

    Article  Google Scholar 

  15. Wang J, Ren F, Yi R, Yan A, Qiu G and Liu X 2009 J. Alloys Compd. 479 791

    Article  Google Scholar 

  16. Mahmoud M H, Elshahawy A M, Makhlouf S A and Hamdeh H H 2014 J. Magn. Magn. Mater. 369 55

    Article  Google Scholar 

  17. Koferstein R, Walther T, Hesse D and Ebbinghaus S G 2013 J. Mater. Sci. 48 6509

    Article  Google Scholar 

  18. Chen W F, Chen H, Koshy P and Sorrell C C 2015 J. Aust. Ceram. Soc. 51 1

    Google Scholar 

  19. Dixit G, Singh J P, Srivastava R C, Agrawal H M and Chaudhary R J 2012 Adv. Mater. Lett. 3 21

    Article  Google Scholar 

  20. Donnerberg H and Birkholz A 2000 J. Condens. Matter Phys. 12 8239

    Article  Google Scholar 

  21. Moradmard H, Shayeshtech S F, Tohidi P, Abbas Z and Khalegi M 2015 J. Alloys Compd. 650 116

    Article  Google Scholar 

  22. Dumitrescu A M, Lisa G, Iordan A R, Tudorache F, Petrila I, Borhan A I, Palamaru M N, Mihailescu C, Leontie L and Munteanu C 2015 Mater. Chem. Phys. 156 170

    Article  Google Scholar 

  23. Sattara A A, El-Sayeda H M and Alsuqia I 2015 J. Magn. Magn. Mater. 395 89

    Article  Google Scholar 

  24. Singh J P, Dixit G, Srivastava R C, Agrawal H M and Kumar R 2013 J. Alloys Compd. 551 370

    Article  Google Scholar 

  25. Gabal M A, El-Shishtawy R M and Al Angari Y M 2012 J. Magn. Magn. Mater. 324 2258

    Article  Google Scholar 

  26. Wagner K 1913 Ann. Phys. 40 817

    Article  Google Scholar 

  27. Berchmens L J, Selvan R K, Kumar P N S and Augustin C O 2004 J. Magn. Magn. Mater. 279 103

    Article  Google Scholar 

  28. Gabal M A, Al Angari Y M and Zaki H M 2014 J. Magn. Magn. Mater. 363 6

    Article  Google Scholar 

  29. Varshney D and Verma K 2013 Mater. Chem. Phys. 140 412

    Article  Google Scholar 

  30. Mocanu Z V, Airimioaei M, Ciomaga C E, Curecheriu L, Tudorache F, Tascu S et al 2014, J. Mater. Sci. 49 3276

    Article  Google Scholar 

  31. Dzunuzovic A S, Ilic N I, Vijatovic Petrovic M M, Bobic J D, Stojadinovic B, Dohcevic-Mitrovic Z and Stojanovic B D 2015 J. Magn. Magn. Mater. 374 245

    Article  Google Scholar 

  32. Ranjan R, Kumar N, Behera B and Choudhary R N P 2014 Adv. Mater. Lett. 5 138

    Article  Google Scholar 

  33. Senthilkumar B, Kalai Selvan R, Vinothbabu P, Perelshtein I and Gedanken A 2011 Mater. Chem. Phys. 130 285

    Article  Google Scholar 

  34. Ghodake J S, Shinde T J, Patil R P, Patil S B and Suryavanshi S S 2015 J. Magn. Magn. Mater. 378 436

    Article  Google Scholar 

  35. Roy P K and Bera J 2012 Mater. Chem. Phys. 132 354

    Article  Google Scholar 

  36. Stergiou C A and Litsardakis G 2016 J. Magn. Magn. Mater. 405 54

    Article  Google Scholar 

  37. Song S, Song Q, Li J, Ramana M V and Zhang Z 2014 Ceram. Int. 40 6473

    Article  Google Scholar 

  38. Caizer C 2015 Handbook of nanoparticles (Switzerland: Springer International Publishing) doi:10.1007/978-3-319-13188-7-24-1

  39. Caizer C and Stefanescu M 2003 Physica B 327 129

    Article  Google Scholar 

  40. Dolia S N, Subhash Chander, Sharma M P and Sudhish Kumar 2006 Indian, J. Pure Appl. Phys. 44 169

    Google Scholar 

  41. Atif M, Nadeem M and Siddique M 2015 Appl. Phys. A 120 571

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by DRDO Project, number ERIP/EP/1103015/M/01/1484/, dated 20.06.13, New Delhi. We also acknowledge SIF at SAS, VIT University, Vellore, and Dr S Manjunatha Rao from Central University Hyderabad for providing XRD, FTIR and VSM (MT curve) facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W MADHURI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BABU NAIDU, K.C., MADHURI, W. Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties. Bull Mater Sci 40, 417–425 (2017). https://doi.org/10.1007/s12034-017-1374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1374-4

Keywords

Navigation