Skip to main content

Advertisement

Log in

Preparation, characterization and mechanical properties of k-Carrageenan/\(\hbox {SiO}_{2}\) nanocomposite films for antimicrobial food packaging

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Kappa-Carrageenan (KCG) films have been formulated as a packaging material. This study has been conducted to investigate the effect of incorporating \(\hbox {SiO}_{2}\) nanoparticles inside the KCG matrix, with the aim of enhancing the mechanical and antimicrobial properties of KCG for reinforcement purposes. Films were prepared by solution casting technique with 1.0, 3.0 and 5.0 wt% of \(\hbox {SiO}_{2}\) nano-filler content taking neat KCG as the reference for the study. Structural characterizations of the prepared nanocomposite films were carried out by Fourier transform infrared, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. SEM and TEM showed homogeneous dispersion of \(\hbox {SiO}_{2}\) nanoparticles in the KCG matrix. The tensile strength increased significantly by introducing the \(\hbox {SiO}_{2}\) nanoparticles into the KCG matrix, in which \(\hbox {KCG}/\hbox {SiO}_{2}\) films have greater tensile strength (53.9 MPa) when compared to the KCG polymer (46.8 MPa). The moisture uptake (MU) of nanocomposites decreased when \(\hbox {SiO}_{2}\) was introduced into the polymer matrix. The barrier property of the prepared KCG-based nanocomposite films decreased oxygen transmission rate with loading of different wt% of \(\hbox {SiO}_{2}\). \(\hbox {SiO}_{2}\) nanoparticle-loaded films produced higher zones of inhibition against Staphylococcus aureus and Escherichia coli strains compared to polymer film. This study was intended to find the applications for KCG films containing \(\hbox {SiO}_{2}\) nanoparticles to enhance the shelf-life of foods in the form of biodegradable wrapper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xiong H G, Tang S W, Tang H L and Zou P 2008 Carbohydr. Polym. 71 263

  2. Calcagno C I W, Mariani C M, Teixeira S R and Mauler R S 2007 Polymer 48 966

    Article  Google Scholar 

  3. Abdelrazek E M, Elashmawi I S and Labeeb S 2011 Physica B 405 2021

    Article  Google Scholar 

  4. Wenxue Y, Zhudi Z, Weitao Z, Yuming S, Bo L, Beihong L et al 2008 Mater. Lett. 62 747

  5. Albert S, Anahit T, Sevan D and Christoph S 2007 Eur. Polym. J. 43 3113

  6. Priestley D, Perla R, Linda B, Koji F and M Torkelson 2007 J. Phys. Condens. Matter 1 205120

    Article  Google Scholar 

  7. Chrissafis K, Paraskevopoulos K M, Pavlidou E and Bikiaris D 2009 Thermochimica Acta 485 65

    Article  Google Scholar 

  8. Voronin E F, Gun’ko V M, Guzenko N V, Pakhlov E M, Nosach L V, Leboda R et al 2004 J. Colloid Interface Sci. 79 326

    Article  Google Scholar 

  9. Konstantinos C, Paraskevopoulos K M, Papageorgiou G Z and Bikiaris D N 2008 J. Appl. Polym. Sci. 110 1739

    Article  Google Scholar 

  10. Mathew G, Hong J P, Rhee J M, Lee H S and Nah C 2008 Polym. Test. 27 360

    Article  Google Scholar 

  11. Yi-Lin C, Seema A, Luis E, Hayrapetyan S, Giannelis E P and Hsi-Mei L 2010 Carbohydr. Polym. 79 391

    Article  Google Scholar 

  12. Barabanova O, Shashkov A S, Glazunov V P, Isakov V V, Nebylovskaya T B and Helbert W 2008 J. Appl. Phycol. 20 1013

    Article  Google Scholar 

  13. Sokolova E V, Chusovitin E A, Barabanova A O, Balagan S A, Galkin N G and Yermak I M 2013 Carbohydr. Polym. 93 458

    Article  Google Scholar 

  14. Venkatesan R, Somanathan N and Rajeswari N 2014 Chin. J. Polym. Sci. 32 667

    Article  Google Scholar 

  15. Venkatesan R, Rajeswari N and Thendral T 2015 J. Polym. Mater. 32 93

    Google Scholar 

  16. Rahaman M M M, Bhowmicka B, Maitya D, Baina M K, Bankuraa K, Sarkarb J et al 2012 Int. J. Green Nanotechnol. 4 230

    Article  Google Scholar 

  17. Ying W, Fengying G, Chang P R, Jiugao Y and Xiaofei M 2009 Carbohydr. Polym. 76 299

    Article  Google Scholar 

  18. Jiugao Y, Jingwen Y, Baoxiang L and Xiaofei M 2010 Biores. Technol. 100 284

    Google Scholar 

  19. Shang X Y, Zhu Z K, Yin J and Ma X D 2002 Chem. Mater. 14 71

  20. Van Zyl W E, Garcia M, Schrauwen B A G, Kooi B J, De Hosson J M and Verweij H 2002 Macromol. Mater. Eng. 287 106

    Article  Google Scholar 

  21. Kim S H, Ahn S H and Hirai T 2003 Polymer 44 5625

    Article  Google Scholar 

  22. Wu C L, Zhang M Q, Rong M Z and Friedrich K 2005 Compos. Sci. Technol. 65 635

    Article  Google Scholar 

  23. Venkatesan and Rajeswari N 2017 Polym. Adv. Technol. 28 20

  24. Venkatesan and Rajeswari N 2017 Polym. Adv. Technol. Doi:10.1002/pat.4042

Download references

Acknowledgements

We thank the Department of Printing Technology, College of Engineering Guindy, Anna University, Chennai, for providing laboratory facilities and chemicals, and we specially thank Centre for Research, Anna University, for providing financial support (Proc. No: CR/ACRF/2013-10) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Venkatesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, R., Rajeswari, N. & Thendral Thiyagu, T. Preparation, characterization and mechanical properties of k-Carrageenan/\(\hbox {SiO}_{2}\) nanocomposite films for antimicrobial food packaging. Bull Mater Sci 40, 609–614 (2017). https://doi.org/10.1007/s12034-017-1403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1403-3

Keywords

Navigation