Skip to main content
Log in

Characterization of \({\hbox {BaTiO}_{3}}\) piezoelectric perovskite material for multilayer actuators

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we present the results of the manufacturing of \(\hbox {BaTiO}_{3}\) powder, which is meant for use in stacked-disk multilayer actuator production. The solid-state technique was used for powder preparation. The properties of barium titanate material, at each stage of its fabrication (powder, granulate, sintered material), influencing on its application for the stacked-disk multilayer actuator were determined. Particularly, the four parameters of \(\hbox {BaTiO}_{3}\) sinter affecting on the usability properties of actuators, not found before in the literature, were estimated. Parameters characterizing the extent of material sintering, SEM microstructures and electric properties of the fabricated pellets are presented and discussed. The dilatometric curve was executed using the high temperature dilatometer to determine at which temperature barium titanate pellets and beams should be sintered to receive full dense sinters. Parameters characterizing the extent of material sintering: the apparent density, the apparent porosity and the water absorbability were estimated. Finally, the problem of metal layer deposition on barium titanate ceramics during actuator fabrication is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Roy A C and Mohanta D 2009 Scr. Mater. 61 891

    Article  Google Scholar 

  2. Vijatović M M, Bobić J D and Stojanović B D 2008 Sci. Sinter. 40 235

    Article  Google Scholar 

  3. Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A et al 2004 Phys. Rev. B 70 024107

    Article  Google Scholar 

  4. Upadhyay R H, Argekar A P and Deshmukh R D 2014 Bull. Mater. Sci. 37 481

    Article  Google Scholar 

  5. Mahajan S, Thakur O P, Prakash C and Sreenivas K 2011 Bull. Mater. Sci. 34 1483

    Article  Google Scholar 

  6. Habib A, Stelzer N, Angerer P and Haubner R 2011 Bull. Mater. Sci. 34 19

    Article  Google Scholar 

  7. Osman K I 2011 Synthesis and characterization of BaTiO \(_{{\mathit{3}}}\) ferroelectric material PhD Thesis

  8. Stojanovic B D, Foschini C R, Pavlovic V B, Pavlovic V M, Pejovic V and Varela J A 2002 Ceram. Int. 28 293

    Article  Google Scholar 

  9. Yu P, Wang X and Cui B 2007 Scr. Mater. 57 623

    Article  Google Scholar 

  10. Miot C, Proust C and Husson E 1995 J. Am. Ceram. Soc. 15 1163

    Article  Google Scholar 

  11. Kholodkova A, Danchevskaya M and Fionov A 2012 In Proceedings of the nanocon conference p 134

  12. Kao C F and Yang W D 1999 Appl. Organomet. Chem. 13 383

    Article  Google Scholar 

  13. Kržmanc M M, Klement D, Jančar B and Suvorov D 2015 Ceram. Int. 41 15128

    Article  Google Scholar 

  14. Gaytan S M, Cadena M A, Karim H, Delfin D, Lin Y, Espalin D et al 2015 Ceram. Int. 41 6610

    Article  Google Scholar 

  15. Chen J F, Shen Z G, Liu F T, Liu X L and Yun J 2003 Scr. Mater. 49 509

    Article  Google Scholar 

  16. Brzozowski E and Castro M S 2003 Thermochim. Acta 398 123

    Article  Google Scholar 

  17. Pavlović V P, Nikolić M V, Nicolić Z, Branković G, Živković L, Pavlović V B et al 2007 J. Eur. Ceram. Soc. 27 575

    Article  Google Scholar 

  18. Kong L B, Ma J, Huang H, Zhang R F and Que W X 2002 J. Alloys Compd. 337 226

    Article  Google Scholar 

  19. Nicolić M V, Pavlović V P, Pavlović V B and Ristić M M 2006 Sci. Sinter. 38 239

    Article  Google Scholar 

  20. Kim Y J, Hyun J W, Kim H S, Lee J H, Yun M Y, Noh S J et al 2009 Bull. Korean Chem. Soc. 30 1267

    Article  Google Scholar 

  21. Kim B J, Park T G and Kim M H 1998 J. Korean Phys. Soc. 32 S289

    Google Scholar 

  22. Steele B C H 1991 Electronic ceramics (Amsterdam: Elsevier)

  23. Richerson D W 1992 Modern ceramic engineering: properties, processing, and use in design (New York: Marcel Dekker Inc.)

  24. Newnham R E and Trolier-Mckinstry S E N 1990 Ceram. Trans. 8 235

    Google Scholar 

  25. Park Y and Kim H 1997 J. Am. Ceram. Soc. 80 106

    Article  Google Scholar 

  26. Stojanovic B D, Foschini C R, Zaghete M A and Veira F O S 2003 J. Mater. Process. Technol. 143–144 802

    Article  Google Scholar 

  27. Benlahrache M T, Benhamla N and Achour S 2004 J. Eur. Ceram. Soc. 24 1493

    Article  Google Scholar 

  28. Vittayakorn N 2006 J. Appl. Sci. Res. 2 1319

    Google Scholar 

  29. Hang T, Glaum J, Genenko Y A, Phung T and Hoffman M 2016 Acta Mater. 102 284

    Article  Google Scholar 

  30. Biglar M, Gromada M, Stachowicz F and Trzepieciński T 2015 Acta Mech. 266 3451

    Article  Google Scholar 

  31. Jiang W, Devanathan R, Sundgren C J, Ishimaru M, Sato K, Varga T et al 2013 Acta Mater. 61 7904

    Article  Google Scholar 

  32. Hu J and Shen Z 2015 Scr. Mater. 107 14

    Article  Google Scholar 

  33. Wang J C, Zheng P, Yin R Q, Zheng L M, Du J and Zheng L 2015 Ceram. Int. 41 14165

    Article  Google Scholar 

  34. Cai W, Fu C, Lin Z and Deng X 2011 Ceram. Int. 37 3643

    Article  Google Scholar 

  35. Zheng P, Zhang J L, Tan Y Q and Wang C L 2012 Acta Mater. 60 5022

    Article  Google Scholar 

  36. He F, Ren W, Liang G, Shi P, Wu X and Chen X 2013 Ceram. Int. 39 S481

    Article  Google Scholar 

  37. Duran P, Gutierrez D, Tartaj J and Moure C 2002 Ceram. Int. 28 283

    Article  Google Scholar 

  38. Yoon D H and Lee B I 2004 J. Eur. Ceram. Soc. 24 739

    Article  Google Scholar 

  39. Wang J C, Zheng P, Yin R Q, Zheng L M, Du J, Zheng L et al 2015 Ceram. Int. 41 14165

  40. Park J H, Yoo D H, Kim C S, Yang H S, Moon B K, Jung G J et al 2006 J. Korean Phys. Soc. 49 S680

    Google Scholar 

  41. Hilborn Jr R B 1965 J. Appl. Phys. 36 1553

    Article  Google Scholar 

  42. Koops C G 1951 Phys. Rev. 83 121

    Article  Google Scholar 

  43. Chanmal C V and Jog J P 2008 Express Polym. Lett. 2 294

    Article  Google Scholar 

  44. Batoo K M, Kumar S, Lee C G and Alimuddin 2009 Curr. Appl. Phys. 9 826

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No. PITN-GA-2013- 606878.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Trzepieciński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromada, M., Biglar, M., Trzepieciński, T. et al. Characterization of \({\hbox {BaTiO}_{3}}\) piezoelectric perovskite material for multilayer actuators. Bull Mater Sci 40, 759–771 (2017). https://doi.org/10.1007/s12034-017-1406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1406-0

Keywords

Navigation