Skip to main content
Log in

Investigation on effect of fibre hybridization and orientation on mechanical behaviour of natural fibre epoxy composite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nowadays bio fibre composites play a vital role by replacing conventional materials used in automotive and aerospace industries owing to their high strength to weight ratio, biodegradability and ease of production. This paper aims to find the effect of fibre hybridization and orientation on mechanical behaviour of composite fabricated with neem, abaca fibres and epoxy resin. Here, three varieties of composites are fabricated namely, composite 1 which consists of abaca fibre and glass fibre, composite 2, which consists of neem fibre and glass fibre, whereas composite 3 consists of abaca, neem fibres and glass fibres. In all the above three varieties, fibres are arranged in three types of orientations namely, horizontal (type I), vertical (type II) and 45\(^{\circ }\) inclination (type III). The result shows that composites made up of abaca and neem fibres with inclined orientation (45\(^{\circ }\)) have better mechanical properties when compared with other types of composites. In addition, morphological analysis is carried out using scanning electron microscope to know the fibre distribution, fibre pull out, fibre breakage and crack propagation on tested composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Sawsen C, Fouzia K, Mohamed B and Moussa G 2014 Constr. Build. Mater.  54 659

    Article  Google Scholar 

  2. Liang S, Gning P-B and Guillauma L 2013 Int. J. Fatigue  63 36

  3. Sparnins E, Nystrm B and Andersons J 2012 Int. J. Adhes. Adhes.  36 39

    Article  Google Scholar 

  4. El-Shekeil Y A, Sapuan S M, Jawaid M and Al-Shuja O M 2013 Mater. Des.  58 130

    Article  Google Scholar 

  5. Sawpan M A, Pickering K L and Fernyhough A 2010 Mech. Mater.  12 4

    Google Scholar 

  6. Mahjoub R, Yatim J M, Sam A R M and Hashemi S H 2013 Constr. Build. Mater.  55 103

    Article  Google Scholar 

  7. Anuar H and Zuraida A 2011 Composites Part B  42 462

    Article  Google Scholar 

  8. Sapuan S M, Leenie A, Harimi M and Beng Y K 2006 Mater. Des.  27 689

    Article  Google Scholar 

  9. Hamzaoui R, Guessasma S, Mecheri B, Eshtiaghi A M and Bennabi A 2014 Mater. Des.  56 60

    Article  Google Scholar 

  10. Vijaya Ramnath B, Manickavasagam V M, Elanchezhian C, Vinodh Krishna C, Karthik S and Saravanan K 2014 Mater. Des. 60 643

    Article  Google Scholar 

  11. Pothana L A, Zachariah Oommen B and Sabu Thomas C 2003 Compos. Sci. Technol.  63 283

    Article  Google Scholar 

  12. Li Z, Wang X and Wang L 2006 Composites  37 497

    Article  Google Scholar 

  13. Aziz S H and Ansell M P 2004 Compos. Sci. Technol.  64 1219

    Article  Google Scholar 

  14. Sellamia A, Merzouda M and Amzianeb S 2013 Constr. Build. Mater.  47 1117

    Article  Google Scholar 

  15. Azwa Z N, Yousif B F, Manalo A C and Karunasena W 2013 Mater. Des.  47 424

    Article  Google Scholar 

  16. Ravi Sankar M, Lava Kumar M and Haribabu S 2014 Int. J. Eng. Trends Technol. 17 3

    Article  Google Scholar 

  17. Moothoo J, Allaoui S, Ouagne P and Soulat D 2014 Composites  51 764

    Google Scholar 

  18. Bledzki A K, Jaszkiewicz A and Scherzer D 2009 Composites Part A 40 404

    Article  Google Scholar 

  19. Rahman Md R, Huque Md M, Islam Md N and Hasan M 2009 Compos. Part A: Appl. Sci. Manuf. 40 511

    Article  Google Scholar 

  20. Liu K, Takagi H, Osugi R and Yang Z 2012 Compos. Part A: Appl. Sci. Manuf.  43 1234

    Article  Google Scholar 

  21. Liu K, Zhang X, Takagi H, Yang Z and Wanga D 2014 Composites  66 227

    Article  Google Scholar 

  22. Bledzki A K, Mamun A A, Jaszkiewicz A and Erdmann K 2010 Compos. Sci. Technol.  70 854

    Article  Google Scholar 

  23. Gironès J, Lopez J P, Vilaseca F, Bayer J, Herrera-Franco P J and Mutjé P 2011 Compos. Sci. Technol.  71 122

    Article  Google Scholar 

  24. Vijaya Kumar T, Ramana K V, Bala Murali K V and Shahjahan P 2012 Gold. Res. Thoughts  2 1

    Google Scholar 

  25. Ali Md A, Suman K N S and Kesava Rao V V S 2012 Glob. J. Res. Eng. Mech. Mech. Eng.  12 1

    Google Scholar 

  26. Mike G R, Smith O O and Stanley A O 2016 Int. J. Adv. Res.  4 155

    Article  Google Scholar 

  27. Punyamurthy R, Sampathkumar D, Ranganagowda G, Bennehalli B and Srinivasa V J 2015 King Saud Univ. Eng. Sci. (in press)

  28. Vijaya Ramnath B, Niranjan Raja R, Junaid Kokan S, Sathya Narayanan R, Rajendra Prasad A R and Elanchezhian C et al 2013 Mater. Des.  51 357

  29. Sathish P, Kesavan R and Vijaya Ramnath B 2015 J. Eng. Appl. Sci.  10 13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kesavan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliappan, P., Kesavan, R. & Vijaya Ramnath, B. Investigation on effect of fibre hybridization and orientation on mechanical behaviour of natural fibre epoxy composite. Bull Mater Sci 40, 773–782 (2017). https://doi.org/10.1007/s12034-017-1420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1420-2

Keywords

Navigation